PROCEEDINGS

The 5th International Conference on Sustainable Animal Agriculture for Developing Countries

"CLIMATE SMART SUSTAINABLE ANIMAL AGRICULTURE FOR FOOD SECURITY AND LIVELIHOOD IMPROVEMENT IN THE DEVELOPING COUNTRIES"

October 27-30, 2015, Dusit Thani Pattaya Hotel, THAILAND

Jointly organized by

PROCEEDINGS

of

The 5th International Conference on

Sustainable Animal Agriculture for Developing Countries

(SAADC 2015)

October 27-30, 2015

Dusit Thani Pattaya Hotel, Thailand

Jointly Organized by:

Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan

Institute of Agricultural Technology, Suranaree University of Technology

Faculty of Technology, Mahasarakham University

Faculty of Veterinary Medicine, Mahanakorn University of Technology

Faculty of Animal Sciences and Agricultural Technology, Silpakorn University Phetchaburi IT Campus

Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University

Faculty of Technology, Udon Thani Rajabhat University

Tropical Feed Resources Research and Development Center (TROFREC)

Department of Livestock Development Thailand

The Animal Husbandry Association of Thailand under the Royal Patronage of H.R.H. Princess Maha Chakri Sirindhorn

Message from the President of RMUTI

Dear Participants,

It is my great honor to welcome all of participants to attend the 5th Sustainable Animal Agriculture for Developing Countries (SAADC) conference which held at the Dusit Pattaya Hotel, Chonburi, Thailand during 27-30 October 2015. It is also 10 years Anniversary of Rajamangala University of Technology Isan (RMUTI), which established depending on Rajamangala University of Technology Act B.E. 2548 (2005). On behalf of RMUTI, I would like to welcome about 350 participants from 40 countries to participate at the conference. The

principal objective f SAADC is to provide a venue for animal scientist, agriculturist, farmers and private sectors to build up the relationship and to exchange their experiences.

The 5th SAADC 2015 is organized by seven institutes such as Rajamangala University of Technology Isan (RMUTI); Suranaree University of Technology (SUT); Mahasarakham University (MSU); Silpakorn University (SPU); Mahanakorn University of Technology (MUT); Nakhon Ratchasima Rajabhat University (NRRU) and Udon Thani Rajabhat University (UDRU).

All sponsors are highly appreciated to make the conference more successful. Last but not least, all partners who contributed to this conference are deeply thanks without your fully supports this conference would never be accomplished.

With best wishes,

Assistant Professor Dr. Viroj Limkaisang

President of RMUTI

27 October 2015

Message from President SAADC International Advisory Committee

Ladies and Gentlemen,

First and foremost, I would like to thank the Organising Committee of the 5th International Conference on Sustainable Animal Agriculture for Developing Countries (SAADC2015) for inviting me to pen a few words in this Souvenir Programme.

I would like to take this opportunity to share with you, especially those who are attending the SAADC series of conferences for the first time that SAADC has grown steadily since the inaugural SAADC2007

organised by Yunnan Agricultural University in Kunming, China. The numbers of participants and countries involved have increased from less than 200 from seven countries in the inaugural conference to more than 300 from 40 countries in this conference. This reflects the relevance of SAADC in providing a platform for animal scientists and producers especially from the developing countries to share experience and network to promote sustainable animal agriculture in our respective countries.

This week we are here again to present our research findings and ideas for promotion of sustainable animal agriculture. I congratulate the Organising Committee for their hard work throughout the last two years to make it possible for us to meet in one of the world renowned beach resorts in Thailand. I would like to thank members of the SAADC2015 International Advisory Committee and the SAADC2015 in-house editors for their input and hard work to support the local organising committee of this conference. Special thank goes to Dr Chris Anderson of the CSIRO Publishing for his help to create the SAADC2015 special issue in the journal of *Animal Production Science* for publication of selected papers presented by the participants of this conference.

Most of all, I thank each and every one of you for your participation in making this conference a great success. I would like to encourage all participants, particularly the younger ones to take this opportunity to make new friends and to create new opportunities to foster cooperation towards promotion and enhancement of sustainable animal agriculture in our respective countries.

Yours sincerely,

Professor Dr. Juan Boo Liang

President SAADC2015 International Advisory Committee 27 October 2015

Message from the Chairman of the 5th SAADC Conference

On behalf of Rajamangala University of Technology Isan (RMUTI), I would like to express my deeply thanks to the SAADC International Advisory Board (IAB) for their agreement to permit RMUTI to organize the 5th SAADC conference together with our co-hosts institutes, these are Suranaree University of Technology (SUT), Mahasarakham University (MSU), Silpakorn University (SPU), Mahanakorn University of Technology (MUT), Nakhon Ratchasima Rajabhat University (NRRU) and Udontani Rajabhat University (UDRU).

The 5th SAADC 2015 consists of scientific session, private sector demonstration, social and cultural activities. The scientific session offers plenary session, invited session, symposium and graduate course. The symposium is an entitled on "Understanding of Biological Product: The role for sustainable Animal Production" by Associate Professor Dr. Kriengsak Poonsuk (K.M.P. BIOTECH CO., LTD). The workshop is an established on "Publishing Your Research Findings in International Journals" by Dr. Thomas J. Schonewille (Utrecht University, The Netherlands). The cultural activities are Thai regional dancing (Fon Ram) with the contributing of Rajamanagala University of Technology Tawan-ook. Field trips are based on two routes: Route I is a "Dairy Buffalo Farm: Runjaun Farm" and Route II is a tropical garden so called "Saun Nongnooch".

I would like to express my sincerely thanks for the keynote, plenary, invited speakers and participants who had been fully supported to make the conference more success and fruitful.

I deeply appreciate to the International Advisory Board (IAB) and the local organizing committee for their great effort and dedication to make the proceeding in time.

Last but not least, I would like to sincerely thanks to President of RMUTI for his fully supports to make this conference successful.

Wish best wishes.

Assistant Professor Dr. Chalermpon Yuangklang

Chairman of the 5th SAADC 2015 Dusit Thani Hotel, Pattaya, Chonburi, THAILAND

Message from Academic Committee Chairman

As the host of the 5th International Conference on Sustainable Animal Agriculture for Developing Countries (SAADC2015), Rajamangala University of Technology Isan do realize the significance of research, innovation and application in terms of international development of economics and society. The SAADC 2015 conference has its objectives to provide a chance for researchers in field of animal science, agriculture and related fields including academicians, researchers, administrators and private sectors both in developing and developed countries to share their

own experiences, to develop collaborative networks among institutions and to strengthen research quality of staff and students for sustainable animal agriculture production.

From the number of oral and poster presentations submitted in this conference in Pattaya, I do impress your participation and have confidence that you all are the scientists with very great enthusiasm to solve problems as well as to share valuable information and knowledge for people prosperity.

I would like to particularly thank all guest speakers and participants who make this conference such a valuable collaborative and successful forum. My sincere thanks go to our co-organizing committee form Suranaree University of Technology, Nakhon Ratchasima Rajabhat University, Mahasarakham University, Mahanakorn University of Technology, Silpakorn University, and Udon Thani Rajabhat University. Special thanks to the scientific committee, reviewers and editorial boards for their great contribution to make the conference successfully organized.

I believe all delegates will benefit substantially from the conference through the presentations of expert speakers and exchanges of ideas with one another. I wish you all have most pleasant and most wonderful time in the conference in Pattaya, Thailand and a safe journey home.

Assistant Professor Dr. Kraisit Vasupen

Chairman of Academic Committee SAADC 2015

Joseph Samo

INTERNATIONAL ADVISORY COMMITTEE:

Chairman:

Prof. Dr. Liang Juan Boo (Malaysia)

Committee Members:

Prof. Dr. Peter Wynn (Australia)

Dr. Hiroyuki Konuma (FAORAP)

Prof. Dr. Harinder Makkar (FAO)

Prof. Dr. Long Ruijin (China)

Assist. Prof. Dr. Chalermpon Yuangklang (Thailand)

Prof. Dr. Liang Chou Hsia (Taiwan, ROC)

Prof. Dr. Pietro Celi (Australia)

Prof. Dr. Junichi Takahashi (Japan)

Dr. Vo Thi Lam Thanh (Vietnam)

Assoc. Prof. Dr. Pramote Paengkoum (Thailand)

Dr. Elizabeth Wina (Indonesia)

ORGANIZING COMMITTEE:

Advisors:

Assist. Prof. Dr. Viroj Limkaisang (President of RMUTI)

Prof. Dr. Charan Chantalakhana

Prof. Dr. Metha Wanapat

President of the Animal Husbandry Association of Thailand under the Royal

Patronage of H.R.H. Princess Maha Chakri Sirindhorn

Chairperson:

Assist. Prof. Dr. Chalermpon Yuangklang

Vice chairperson:

Assoc. Prof. Dr. Pramote Paengkoum

Secretary:

Dr. Benya Saenmahayak

Fund raising committee:

Chiarperson: Assist. Prof. Dr. Sasiphan Wongsuthavas

Secretary: Dr. Siwaporn Paengkoum

Public Relations:

Dr. Weerawat Namanusart

Social Culture:

Assoc. Prof. Dr. Opart Pimpa

Dr. Siwaporn Paengkoum

International Scientific Committee:

Chairman: Assist. Prof. Dr. Kraisit Vasupen (Thailand)

Co-Chairman: Dr. Vincenzo Tufarelli (Italy)

Secretary: Assist. Prof. Dr. Smerjai Bureenok (Thailand)

Members:

Publishing Advisor: Dr. Chris Anderson (Australia)

Assoc. Prof. Dr. Songsak Chumpawadee (Thailand)

Prof. Dr. Pietro Celi (Australia)

Prof. Dr. Ermias Kebreab (USA)

Prof. Dr. Mohd Ariff Omar (Malaysia)

Prof. Dr. Norhani Abdullah (Malaysia)

Prof. Dr. Ariff Omar (Malaysia)

Prof. Dr. Christopher McSweeney (Australia)

Prof. Dr. Peter Daniels (Australia)

Dr. Elizabeth Wina (Indonesia)

Prof. Joaquim Balcells (Spain)

Dr. James Chin (Australia)

Prof. Dr. Thomas J. Schonewille (The Netherlands)

Registration:

Dr. Siwaporn Paengkoum

Dr. Nittaya Pitiwittayakul

Dr. Totsapron Srisaphoomi

Financial/Treasurer:

Mrs. Ekarat Vasupen

Website:

Mr. Ekkachai Sae-jueng

Mr. Ekkalak Chimjarn

Mr. Thanin Rabiabpho

Mrs. Chonlada Chimjarn

Mr. Soravit T.Siriwattana

List of Reviewers:

Prof. Dr. Yangqing Lu Prof. Dr. Kazuaki Takehara Prof. Dr. Anton C. Beynen Prof. Dr. Kawamoto Yasuhiro

Prof. Dr. Wahid Haron Dr. Jothi Panandam Dr. Chen Wei Li Dr. Tomoyuki Suzuki Dr. Eko Widodo

Dr. Abdoreza Soleimani Dr. Awis Q. Sazili

Assoc. Prof. Dr. Boonlom Cheva-Isarakul

Assoc. Prof. Dr. Chalong Wachirapakorn Assoc. Prof. Dr. Songsak Chumpawadee

Assoc. Prof. Dr. Jatuporn Kajaysri Assist. Prof. Dr. Araya Seubkhamphet Assist. Prof. Dr. Jamlong Mitchaothai Assist. Prof. Dr. Sakchai Reunphet

Assist. Prof. Dr. Walaiporn Tonpitak

Assist. Prof. Rachakris Lertpatarakomol Assist. Prof. Dr. Pattaraporn Poommarin Assist. Prof. Dr. Skorn Koonawootrittriron

Dr. Wittawat Molee Dr. Danai Sangthong

Dr. Darsaniya Punyadarsaniya

Dr. Grisada Khumpool Dr. Pannigan Chaichanasak Dr. Sunisa Sirimongkolvorakul

Dr. Sunpetch Sophon

Dr. Thuchadaporn Chaikhun-Marcou

Dr. Umaporn Rungroekrit

Mr. Patipan Jaipeng

Mr. Pichai Jirawatthanapong Mrs. Kornkamon Padiporn

Dr. Khanitta Ruangwittayanusorn

Dr. Atra Chaimongkol
Dr. Daranee Sookying
Dr. Chatchawan Singhapol
Dr. Narin Preyavichyapugdee
Dr. Nittaya Pitiwittayakul
Mr. Pichet Sriboonyoung

Dr. Juan Boo Liang

Prof. Dr. Thomas J. Schonewille

Prof. Dr. Eric A. Decker Prof. Dr. Pietro Celi Prof. Dr. Peter Wynn Dr. Hassan Sadri Dr. Devika Saddul Dr. Tan Hui Yin Dr. Irfan H. Djunaidi Dr. Mohd Ariff Omar Dr. Elizabeth Wina

Assoc. Prof. Dr. Surintorn Boonanuntanasarn

Assoc. Prof. Dr. Anut Chantiratikul Assoc. Prof. Dr. Opart Pimpa

Assoc. Prof. Dr. Pantipa Na Chiangmai Assoc. Prof. Dr. Pramote Paengkoum Assist. Prof. Dr. Chalermpon Yuangklang

Assist. Prof. Dr. Kraisit Vasupen Assist. Prof. Dr. Smerjai Bureenok Assist. Prof. Dr. Sasiphan Wongsuthavas Assist. Prof. Dr. Charunee Kasornpikul Assist. Prof. Dr. Sutisa Khampaka

Assist. Prof. Dr. Chaweng Sarnklong Dr. Chakrapong Chaikong

Dr. Seksan Wongsiri
Dr. Kanok-on Nugboon
Dr. Benya Saenmahayak
Dr. Totsapron Srisaphoomi
Dr. Weerawat Namanusart
Miss Sirinun Lasrichan
Dr. Pornpan Saenphoom

Dr. Chaowadee Laosutthipong Dr. Wantanee Polviset Dr. Peerapot Nitipot

Dr. Huang Xiaodam Dr. Anan Chaokaur

Dr. Suphavadee Chimtong

Dr. Janjira Sittiya

Dr. Nattiya Chumnanka Dr. Chomphoonuch Khongla Dr. Saowaluck Yammeun-art

CONTENTS

Aquaculture							
A-338	Aquaculture in a protected gulf: The case of Amvrakikos (Greece)	1					
A-369	Meat and bone meal as an alternative for fish meal in diets for black carp (Mylopharyngodon piceus)	4					
A-524	Growth performance of carrageenan-producing seaweeds of <i>Kappaphycus</i> and <i>Eucheuma</i> in Sumbawa	11					
A-531	Advantages of environmentally sound poly-eco-aquaculture in fish farms						
Animal Biotec	hnology						
AB-125	Study of humoral immune response using IBD Blen® and Vaxxitek HVT-IBD®	17					
	vaccines even high maternal derived antibody in broiler chickens						
AB-169	Fertility status of local PO cattle and its crosses with Limousin and Simental bull in Situbondo Regency, East Java, Indonesia	20					
AB-319	Reliable monoclonal antibodies for immunodiagnosis of fasciolosis in both animal and human	23					
AB-342	Vitrification of mouse embryos: comparison of Cryotop and hemi straw closed system methods	26					
AB-343	Impact of complete feed silage from sugar cane waste product on Bali beef cattle performance	29					
AB-437	Development of a rapid immunochromatography test for detecting antibodies after anthrax vaccination in cattle: A preliminary study	32					
AB-481	The effect of <i>Cinnamomum burmannii</i> extract as an immunomodulator on the increase of GR-1 expressing IFNγ and macrophage	36					
AB-555	Genetic variation of MHC Class II DRB3 gene in local goat from South Sulawesi	39					
Autoral Canad	Indonesia						
Animal Genet AG-080	The relationship between longevity and reproductive efficiency in Lori-Bakhtiari ewes	43					
AG-095	The Interleukin-8 gene polymorphism and its association with milk production traits in Holstein Cows	46					
AG-100	Genetic improvement of production performance for Yorkshire	49					
AG-104	Genetic parameters and trends for growth and carcass traits of Landrace in Korea	52					
AG-105	Effect of sex and carcass weight on pork belly characteristics of Large White	55					
AG-107	Influence of sex and carcass weight on pork belly muscle of Large White	58					
AG-130	Production and reproduction characteristics of tegal and magelang ducks	61					
AG-149	Breeding potency of Bali cattle as indigenous beef cattle breed in Sumbawa Island Indonesia	64					
AG-161	Institutional development on conservation of Madura cattle	67					
AG-164	Annual trend of genetic improvement for production performance of three swine breeds	70					
AG-182	Phenotypic and chromosome band intensity characters of swamp buffalo in very isolated area of East Java, Indonesia	73					
AG-211	The study of reproductive efficiency over the lifetime of Lori-Bakhtiari ewes	76					
AG-263	Performance testing of Kamphaeng Saen bulls	80					
AG-356	Modelling genomic selection strategies to improve genetic gain in swine breeding	84					
AG-431	programs using ZPLAN+ Effects of different mating methods on hatchability and embryonic mortality of	87					
A C . 520	indigenous chicken eggs	0.1					
AG-530	Proximity of genetic cross Boer goat with Local goat to parent based on gene DNA Capra hircus growth hormone (ChGH)	91					

AG-535	Effect of numbers of day of progesterone intra-vaginal device insertion on oestrus rate pregnancy rate and little size in Thai-native cross breed goats	94
AG-560	Genetic parameter estimation for prolificacy trait of local Ettawah crossbreed goat	97
Animal Nut		
AN-007	Effect of microbial mixture on survival of fermented juice of epiphytic lactic acid bacteria (FJLB)	100
AN-012	Effects of storage time on external and internal characteristics of lutein eggs	102
AN-014	Efficacy of probiotic Enterococcus mundtii in dried form in broilers	106
AN-021	Truly absorbed protein in the small intestine content of alfalfa hay harvested at various blooming	110
AN-026	Growth response of purebred Merino and crossbred prime lambs from feed supplemented with canola and flaxseed oils	113
AN-033	Vitamin E and C effect on meat of Muscovy duck	117
AN-036	<i>In vitro</i> nutrients digestibility and fermentation characteristics of king grass combined with concentrate containing mixed microbes	121
AN-037	Periodic changes in chemical composition and in vitro digestibility of Gramineae feed resources in the Philippines	125
AN-038	Chemical composition of forages and browses offered to stall fed goats on smallholder farms in Mauritius	128
AN-047	Feed intake and serum metabolite of goats fed crude glycerin from waste vegetable oil	131
AN-056	Nutritive value of oil palm fronds treated with white rot fungi	135
AN-057	Effect of chemical treated shrimp meal on growth performances of broilers	139
AN-068	Effect of bee pollen as a natural antioxidant on the performance, carcass and antioxidant status of V-line rabbits	142
AN-073	Nutritive value of grower pig ration using local feeds in West Manokwari District, Manokwari	145
AN-078	The effect of chemical processing of soybean meal on <i>in vitro</i> ruminant intestinal available protein	149
AN-086	The effect of Mao pomace supplementation in diets on blood parameters of meat ducks	152
AN-116	Effects of cassava treated lactic acid supplementation on dry matter degradability and rumen fermentation in beef cattle	155
AN-121	Feeding value of dried cashew nut testa in finishing pigs: effects on growth performance, economic return and carcass characteristics	158
AN-124	Effect of oral administration of red ginger extract on performances of hybrid ducks	164
AN-143	The inclusion effect of mangosteen (Garcinia Mangostana L.) peel as feed additive on blood profile and testosterone level of Mojosari male duck	167
AN-144	The effects of quantitative restricted feeding on performances and internal organ weight broiler	170
AN-146	Evaluation of mulberry leave as a functional feed additive of laying hens	174
AN-147	Effects of performance and intestinal morphology by supplementation with a functional feed additive in poultry diet	177
AN-151	Nitrogen balance and carcass quality in broilers given a low-protein diet in the grower period and higher-protein diets in the finisher period	180
AN-153	Effect of a heat stress reducing additive on meat production and quality in Hanwoo heifers	183
AN-154	Effect of fermented plant extracts on enteric methane production in the rumen	186
AN-171	Enhancement of rice straw nutrient value by solid state fermentation with Trichoderma	189
AN-174	Allometric productivity forage and goat foraging behaviour in rangeland at Ebelo Amboasary in Southern of Madagascar	191

AN-177	Supplementation of recombinant lycopene on egg quality and blood characteristics in quail diet	198
AN-184	Effect waste of cabbage on rabbit meat	201
AN-187	Effect of propolis as a natural antioxidant on the performance, carcass and antioxidant status of V-line rabbits	206
AN-193	The effects of phonological stages on forage quality of four rangeland species for the sheep nutrition in Sari plain, Iran	210
AN-202	Effect of ginger root powder supplementation on growth performances and carcass characteristics of broiler chickens as rearing in hot climate	214
AN-205	Fermentation patterns of alfalfa hay and Ulva Fasciata using gas production technique	218
AN-206	To compare intestinal available protein of <i>Ulva Fasciata</i> with alfalfa hay using a new gas technique	221
AN-213	Effect of Curcuma domestica stock solution on layer performance, egg quality, and antioxidant activity	224
AN-215	Effect of yeast fermented fresh cassava root fed beef cattle on digestibility	228
AN-229	Changes in metabolic hydrogen flow on bovine rumen fermentation in response to cashew nut shell liquid	231
AN-231	Utilization of cassava pulp and corncob fermented with <i>Aspergillus niger</i> for animal feed: effect on protein levels	234
AN-256	Nutrient composition and in vitro ruminal degradability of selected local plants used as goat feed in Malaysia	236
AN-269	Effect of crude glycerin supplementation on performance of dairy heifers	240
AN-271	Utilization of fresh cassava with ruzi grass fermented by microbes from Pangkhaomark as diets in swine	244
AN-284	Evaluation of urea-yeast fermented fresh cassava root as protein source by using <i>in vitro</i> gas production technique	247
AN-291	The effects of soybean meal treated with green tea marc crude extract on oxidative status and milk production of dairy cows	251
AN-294	Utilization of <i>Samanea saman</i> pod meal as protein source in diet on voluntary feed intake and digestibility of goats	255
AN-301	Digestibility and nitrogen balance of growing goats fed different Mimosa pigra (L.) meal levels	258
AN-303	Effects of banana stem supplemented on productive performance of finishing pigs	261
AN-305	Effect of cultivation time on populations of yeast and lactic acid bacteria co-cultures in fermented milk	264
AN-309	Effect of dietary supplementation of bioceramic powders on production performance of broiler chickens	268
AN-314	Effect of cutting age and ensilage on chemical composition of Pak Chok1 and King	272
AN-324	giant napier grasses Effects of levels of dried leucaena (<i>Leucaena leucocephala</i>) supplementation on	276
AN-348	nutritive value of milk in organic dairy cows Potential of seaweed as feed to make a healthy broiler meat chicken	280
AN-354	Metabolic imprinting improves rumen development via modulation of epigenetic gene	283
AN-357	expression including histone modification Effect of rumen content on the performance and external body measurement of	287
AN-358	Sudanese desert kids Potassium iodate supplementation in layer drinking water for iodine enriched egg and	291
AN-367	laying performance Efficacy of dry powdered Enterococcus italics on immune responses to Mycoplasma	294
AN-370	hyopneumoniae vaccination Effect dietary energy concentrate on birth weight and weaning weight of Sudanese	297
AN-398	Taggar goat kid's Feeding standard for Hanwoo cattle: past, present and future	300
AN-400	Estimation of the TDN of spent mushroom substrates used as Hanwoo feed	303

AN-402	Feed intake, nutrient digestibility and rumen parameters in goats as affected by mao (Antidesma thwaitesianum Muell. Arg.) seed meal supplementation	306
AN-410	Effects of spineless cactus feeding on milk production, milk quality and antioxidant capacity in dairy goat	309
AN-416	Effects of wet soya milk waste supplementation on feed intake and growth performance of goats fed corn stubble silage	316
AN-421	Effect of high choline levels supplementation on phosphatidylcholine concentration in egg yolk of laying hen	319
AN-429	Effect of coconut oil supplementation on meal pattern, feed intake, and milk yield in early lactating crossbred dairy goat	324
AN-432	The effect of the use of cassava leaves silage in concentrate on goat performance	331
AN-434	Effects of CNCPS fraction-enriched protein feeds on ruminal fermentation in Holstein Steers fed TMR containing low protein as a basal	334
AN-440	Effects of dietary pomegranate by-products on performance, immunity, intestinal microbiology and odorous gas emissions from excreta in broilers	338
AN-442	Effects of synbiotic supplemented in broiler diet on carcass and meat quality	341
AN-444	Feed intake, digestibility, nitrogen retention and daily weight gain of steers fed on sugarcane stalk based complete diet silage	344
AN-445	Effect of nitrate addition to cassava chip on In vitro gas production	348
AN-447	Effects of TDN value in TMR on ruminal fermentation characteristics and effective dry matter degradability by rumen microbes	351
AN-451	Utilization of Paprika (Capcicum annuum) by product for ruminants feeding	354
AN-452	Performance of Lohi sheep and Beetal goats fed various fodders	357
AN-453	Intake digestibility of summer fodders fed sheep and goats	360
AN-458	Feed intake and nutrient digestibility in goats of silages prepared from Stylo legume (<i>Stylosanthes guianensis</i> CIAT184) treated with dried mao pomaces (DMP) and lactic acid bacteria	363
AN-461	Effect of combination acidifiers-garlic-Phyllanthus niruri L. powder and encapsulated form in feed on production performance and egg quality of laying hens	366
AN-464	Characteristics of fermentation kinetics and digestibility of PUFA saponification and aldehid protected as cattle feed supplement by in-vivo	371
AN-470	Effect of usage probiotics powder as feed additive on the eggs quality of laying hens	374
AN-475	Supplementation of different sources of nitrogen and its effects on rumen microbial biomass and <i>in vitro</i> feed degradability parameters	379
AN-480	Rumen adaptation for urea on feed intake, nutrient digestibility and microbial protein syntheses of swamp buffaloes	383
AN-484	Study on rumen ecology of swamp buffaloes as affected by urea as protein source in concentrate mixture fed on rice straw based	387
AN-485	Effect of Flemingia macrophylla (FLM) as a protein source on rumen fermentation and microbial population in dairy steers	391
AN-486	Effect of rice straw treat menton feed intake and nutrient digestibility in swamp buffaloes	394
AN-491	Efficacy of endogenous emulsifier in broilers diets on growth performance	398
AN-494	Effects of fattening length and energy levels on meat characteristics of Iranian native lamb	402
AN-496	Comparative efficacy of herbal methionine and synthetic DL-Methionine on performance in laying hen	405
AN-498	In Situ evaluation of heat treated vegetable protein sources	409
AN-499	Efficacy of probiotics (Sanizyme) on performance in broiler diets	413
AN-501	Efficacy of probiotics (Sanizyme) on performance and digestibility in weaning piglets diets	417

AN-504	Effects of condensed tannins of some tropical plants on ruminal gas production in vitro	421
AN-505	Dietary fat sources on growth performance and body composition in broiler chickens	425
AN-506	Influence of rice straw treated on rumen fermentation and microbial population in swamp buffaloes	428
AN-512	A study on nutrient intake and digestibility, rumen environment and nitrogen retention of sheep fed different levels of ensiled water hyacinth in diets	431
AN-513	Effect of dried cassava chips in growing rabbit diets on meat performance and economic returns	434
AN-517	Effects of wet soya milk waste supplementation on feed intake and growth performance of goats fed corn stubble silage	438
AN-519	Productive performance and production cost of different cross bred meat goats fed high levels of OPL fermented TMR	441
AN-522	The effect of <i>S. rarak</i> microparticles on blood profile and productivity of broiler chickens raised on litter system inoculated with <i>E. tenella</i>	445
AN-532	Effect of different Chinese herbs on antioxidant capacity and immune function in Sansui laying duck	448
AN-534	Enhancing the nutritional value of soybean through supplementation with new- generation feed enzymes for poultry –Review	452
AN-539	The effects of feed fermented by Azotobachter microbes culture on milk production and its feed efficiency at dairy cattle	456
AN-552	Evaluation of nutrient digestibility of mixed cassava pulp and Napier Pakchong grass for use as an alternative feedstuff in laying hens	459
AN-564	Effect of extraction methods for krabok oil on milk production, compositions and fatty acids in milk of dairy cows	462
AN-569	Supplementation of different sources of nitrogen and its effects on rumen microbial biomass and <i>in vitro</i> feed degradability parameters	466
Animal Phy		
AP-008	Effects of lycopene on hepatic metabolic and immune-related gene expressions in chickens	467
AP-173	The effect of different altitude to adaptability, feed consumption and weight gain's lactating ettawa's cross bred	470
AP-435	Differential level of plasma nesfatin-1, ghrelin and leptin for onset of puberty in Murrah buffalo heifers	473
AP-472	The effect of teat seal on milk microorganism number in postpartum cows	477
AP-526	Growth performances of PO cattle and its crossbred with European cattle (POE) maintained in different environmental conditions	480
AP-536	Morphological studies of thyroid gland of Saidi rams fed mannan oligosaccharide supplemented diet	483
AP-538	The study of extracellular hsp70 & physiological parameters, the effect of feeding improvement of the Ongole crossbred & it's crossing breed	486
Animal Rep	roduction	
AR-023	Breeding soundness evaluation in Garut ram	489
AR-024	Individual variation on the success of garut ram frozen semen production	492
AR-066	Efficiency of difference doses of pregnant mare's serum gonadotropin on superovulations in meat goats	496
AR-082	Noni effect on goat sperm motility after cooling	499
AR-119	Productive and reproductive performance of indigenous Lime and Parkote buffaloes in the Western hills of Nepal	502
AR-120	The Oocyte parthenogenesis stimulation by protein extract of goat spermatozoa	505
AR-131	Supplementation of vascular endothelial growth factor (VEGF) increases the maturation of porcine COCs derived from small follicles	508
AR-194	Supplementation of L-Carnitine on matured goat oocyte in vitro	511
AR-254	The acceptability of reduced sperm concentration in frozen buffalo semen	514

AR-255	Reproductive performance of cattle and buffaloes treated with prostaglandin F2α and gonadotropin releasing hormone in Thailand and Philippines	518
AR-310	Morphometric dimensions of the spermatozoa in Thai native boar depend on the	522
AR-383	ejaculates Effects of addition juice date palm to the extender on the percentage of live and motility of frozen thawed bull spermatozoa	526
Basic Veteri	nary Science	
BVS-148	Antibacterial activity of wood vinegar against <i>Salmonella</i> Enteritidis and <i>Salmonella</i> Typhimurium	529
BVS-207	Virucidal efficacy of Clinacanthus nutans and Houttuynia cordata extract against virulent Newcastle Disease Virus	532
BVS-313	Ciliary activity and life span of swine precision-cut lung slices: Comparison between changed and unchanged medium	536
BVS-331	Factors influencing the incidence of Babesiosis in sheep of district Toba Tek Singh, Pakistan	541
BVS-340	The <i>in vitro</i> antibacterial activity of <i>Muntingia calabura</i> against Staphylococcus aureus and Streptococcus agalactiae	546
BVS-399	Study of the optimal condition of RNA in situ hybridization for HER-2/neu in canine mammary gland	549
Food Science		
	e and Technology	550
FST-267	Process development of cooking wine from whey of buffalo milk	553
FST-302	Study of differential protein composition of raw milk and processed milk by using SDS-PAGE and Native-PAGE	556
FST-476	Development and production of Shrikh and by utilization of pomegranate fruit	559
FST-483	Physico-chemical quality of kefir of etawah crossbred goat milk	563
FST-551	Histological liver of mice (<i>Mus musculus</i>) consumption collagen extract of broiler's bone in South Sulawesi, Indonesia	566
FST-578	Effect of jelly addition on kefir quality	574
Feed Techno	alogy	
FT-099	Crude triterpenoid, phenolic compounds and enzyme activities of fermented soybean	577
FT-111	hull by <i>Antrodia cinnamomea</i> Effect of performance and intestinal characteristics on supplemented with protease in the broiler diet	579
FT-299	The levels of TBARs in pellet fish feed mixed with different astaxanthin levels and	582
FT-355	packaging methods Standardized total tract digestibility of phosphorus of various meal diets as protein	587
FT-406	source in growing-finishing pigs Application of feed technology of quail (<i>Coturnix-coturnix Japonica</i>) using waste of	592
FT-430	Skipjack (<i>Katsuwonus pelamis</i>) Quality of protein concentrate from <i>Jatropha curcas</i> seed cake produced by chemical	595
FT-544	and biological processing Serum testosterone, testes size and semen quality of rams fed sugarcane bagasse	600
	treated with urea or pronifer	
Livestock ar	nd Environment	
LE-375	Effects of storage on pathogenic bacteria content of layer manure extract	604
LE-408	Effect of heat stress environment on the blood parameters and behavior pattern in Korean native calves	608
LE-460	Study of local feeds potency for pig farming development in Manokwari, West Papua, Indonesia	612
LE-510	A response of in vitro and in vivo methane production, nutrient digestibility and rumen	615
LE-548	parameters of sheep by Cat fish oil (CFO) supplementation Water footprint of milk production in Thailand	618
LE-550	Biogas unit, an alternative solution for reducing green house gas effect of animal waste	621

LF-022	Development of farmer champions and their role in progressing smallholder beef	624
	production in Vietnam	
LF-072	The assessment of cattle and palm oil plant integration system in West Sumatera, Indonesia	628
LF-162	Characterization of native pig raisers and their current production systems in the integrated sweet potato –native pig production system in Baliem valley, Jayawijaya regency, Papua province, Indonesia	634
LF-218	Smallholder identified constraints to adoption of new forage options in South Central Coast Vietnam	638
LF-220	Studies on socio-economical profile of the dairy farmers in Latur district of Maharashtra state	645
LF-234	Economic impact of spatial development on goat farming in Banjarnegara district Indonesia	644
LF-349	Pasture management and supplemented feed enhanced the performance of farmed buffaloes in Sabah, Malaysia	649
LF-361	Developing technology and husbandry skills required for efficient animal production in villages in the highlands of Papua Indonesia	654
LF-378	Partnership in broiler farm closed house system (case study at Tuban, East Java, Indonesia)	657
LF-381	Moving families from subsistence animal production to small commercial production using a participatory approach with a multidisciplinary team	660
LF-389	Development of local cattle with sustainable in North Sulawesi	663
LF-393	Analysis of the resource potential of the coconut crop-cattle in the district of East Likupang	667
LF-404	Utilization of cattle waste as compost fertilizer	671
LF-465	The Study of nutritive value of plant for goat in Pattani province of Thailand	674
Livestock M		(77
LM-044	Production performance of laying hen housing on litter system with different temperature	677
LM-046	Use of agricultural by-product in pig ration to reduce feed cost in Manokwari Regency, West Papua Province, Indonesia	680
LM-079	Evaluation of goat milk quality to support dairy goat development	683
LM-155	Insight into broiler development in East Java	687
LM-203	Association among fat, protein, lactose and total solid of milk produced by farmers in central part of Thailand	690
LM-215	Conventional and deep - litter pig production system: income over feed cost of three breed cross fattening pigs	693
LM-306	Application of PCR technique to detect <i>Staphylococcus aureus</i> that causes mastitis in dairy cows	696
LM-345	Enhancing goat farm performance thru the farmer livestock school –goat enterprise management modality	699
LM-443	Constraints to improved productivity of smallholder cow-calf systems in South Central Coast Vietnam – insights from recent surveys	703
LM-553	Efforts to increase production of cow's milk through the cooperation empowerment in Sinjai Regency	707
LM-589	Why poultry welfare in Kuwait is an obstacle to trade?	711
	e	
Meat Scienc		
<mark>Meat Scienc</mark> M-045	Nutrition, fatty acid and cholesterol content of Garut lamb meat at different ages fed with diet containing mungbean sprouts waste	715
	Nutrition, fatty acid and cholesterol content of Garut lamb meat at different ages fed with diet containing mungbean sprouts waste Some functional properties of beef liver protein concentrates	715 718
M-045	with diet containing mungbean sprouts waste	

M-298	Meat quality of crossbred fattening pigs sired by Pakchong 5 boars and commercial boars	733					
M-412	Comparison muscle fiber size, sarcomere length and tenderness between chicken and duck meat	737					
M-413	Effect of immunocastration on myosin heavy chain isoform expression						
M-441	Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (<i>Punica granatum</i> L.) by-products						
M-448	Effect of dried fermented juice of epiphytic lactic acid bacteria on broiler meat quality						
M-459	Prediction of meat and carcass quality traits by real-time Ultrasound in swine	751					
M-489	Drip and cooking loss of longissimus dorsi muscle under different levels of energy and protein in Iranian kid native breed						
Others							
O-084	Microbiological and chemical characteristics of probiotic goat cheese with mixed cultures of <i>L. rhamnosus</i> and <i>L. plantarum</i>	758					
O-092	Production elasticity of broiler farming in blitar regency, East Java, Indonesia	762					
O-141	The differences of milk density and fat content in Tawang Argo Village compared with Indonesian National Standard	766					
O-196	Marketing analysis of broiler farming system on partnership scheme in Ponorogo Regency, East Java Province, Indonesia	769					
O-204	Physical properties and microstructure of dangke pipening, a traditional cheese of Enrekang Sulawesi Indonesia	772					
O-221	Studies in urban geography of latur city of maharashtra state of India with special reference to demographic features	777					
O-252	Body growth of Thai wild boar (<i>Sus scrofa jubatus</i>) within a yearling age in a deep litter pig production system	780					
O-266	Consumer attitude toward meat consumption in Ghana						
O-352	Effect of herbal immunostimulant formulation with Newcastle disease oral pellet vaccine on immune response in native chicken	787					
O-377	Effects of probiotics supplementation on nutrient digestability in captive asiatic elephants in temples of Tamilnadu in India	790					
O-384	A retrospective investigation of co-endoparasitism of dog and cat patients in Nongchok subprovince, Thailand	795					
O-463	Quality of chicken eggs in the flea market, KamphaengSaen district, NakhonPathom province, Thailand	780					
O-477	Effect of carbon and nitrogen sources on growth of <i>Alternaria solani</i> (Ell. & Mart.) Causing early blight of Tomato	803					
Veterinary Pul							
VPH-249	Prevalence of parasite infection of puppy dogs to 2 months under animal hospital institute, Udon Thani Rajabhat University	806					
	INVITED PAPERS						
Invited speaker	Is small animal farming system of low technology?	809					
Invited speaker	Family poultry farming system and their characteristics in developing countries	813					
Invited speaker	Two types of grazing system under tropical pasture in South western islands of Japan	819					
Invited speaker		824					
Invited speaker	Human behaviours as determinants of animal disease: meeting the challenge of a complex mix of changing production systems	845					
Invited speaker		848					
Invited speaker	Capacity building and services to assist local farmers to improve aquaculture management in Vietnam	852					

Aquaculture A-524

Growth performance of carrageenan-producing seaweeds of *Kappaphycus* and *Eucheuma* in Sumbawa

Nunik Cokrowati*¹, A.Nikmatullah², Sunarpi³, Z. Abidin¹

Abstract

This research purpose is to address growth performance of carrageenan-producing seaweeds of Kappaphycus and Eucheuma. The research was conducted in coastal area of Kaung Island, Buer sub-district, Sumbawa Regency from August to September 2012. Importance of Eucheuma/Kappaphycus spp. for Indonesian economy and farmer livelihood are main source of hydrocolloids and main source of income. West Nusa Tenggara is one of the production center for Eucheuma/Kappaphycus in Indonesia. The method used for this study was planting seaweed using long-line system involving 25 farmers. The species planted were Kappaphycus alvarezii Tembalang, Kappaphycus alvarezii Maumere, Kappaphycus striatum and Eucheuma spinosum. The growth of *Eucheuma* spp was measured every 7 days until harvesting time which is 45 days. Initial seed weight was 100 g and the number of seeds perline were 200. Purphoses sampling done by 5 samples per line for analysis of fresh weight, dry weight, carragenan content and incident disease. The result of this research shows that the increase in weight Kappaphycus alvarezii Tembalang is 0.82 grams/day, Kappaphycus alvarezii Maumere is 0.06 grams/day, whereas that of Kappaphycus striatum is 0,97 grams/day and Eucheuma spinosum is 5,59 grams/day. It can be concluded that K. alvarezii, K. striatum and E. spinosum can grow in Kaung, E. spinosum is more adaptable to Kaung ecology, and can be grown throughout the year.

Keyword: cultivation, long line, fresh weigth, dry weight, adaptable.

Introduction

The development if seaweed cultivation to improve community's prosperity in NTB is supported by economic potency and large cultivation area. As an illustration, data of economy survey in 2010 show that seaweed farmer revenue in NTB ranged from Rp. 26.538.000 to Rp. 60.458.500 per year, in which the potency of cultivation area reached 25.206 hectares (Pemda NTB, 2011). However, the use of this area just reached 44% with total production of dry seaweed was 221.047 tonnes (Pemda NTB, 2011).

Economically, seaweed cultivation is one of productive businesses within coastal area which brings benefit. Besides accelerating seaweed harvest time (30 to 50 days) and cultivation that does not need a complex maintenance, seaweed (*Eucheuma/Kappaphycus*) cultivation in NTB is also an important source of livelihoods that improves community's revenue along the coastal area. This is because the cultivation of seaweed can bring revenue which is 26 to 60 million rupiahs per year and it depends on cultivation method used and the total area of cultivation.

¹ Aquaculture study program, Mataram University

² Agriculture Faculty, Mataram University

³ Mathematic anda Science Faculty, Mataram University Jl. Majapahit No. 62 Telp. (0370) 633007 Mataram 83125

^{*}Corresponding author: n_cokrowati@icloud.com

In the other hand, dry seaweed production in NTB just reached 220,000 tonnes, and this value is less than the potency of production which is more than 1 million tonnes per year (Pemda NTB, 2011). Seaweed is not only an important source of alternative livelihood for farmers, but also a source of hydrocolloid used in many industries. Some of these industries are pharmacy, food, paint, and cosmetic that uses carrageenan as one of raw materials.

According to those facts, the local government of NTB has taken strategic steps including extension and intensification of seaweed cultivation in order to improve seaweed production in NTB and increase locally-generated revenue. This effort also aims to grow economic business which is productive that benefits coastal community that generally has low income. From the perspective of NTB, extension of seaweed cultivation directed to Sumbawa Island has a big potency because of the extent of potential area that has not been used which is more than 50% out of 20.200 hectares of potential area for seaweed cultivation in Sumbawa Island. Kaung Island is a potential area to develop cultivation of many species of seaweed such as Kappaphycus and Eucheuma. According to this fact, there is a need of a research to address the growth of and carrageenan from *Kappaphycus and Eucheuma* cultivated in marine area of Kaung Island.

Material and Methods

The method used for this study was planting seaweed using long-line system involving 25 farmers. The species planted were *Kappaphycus alvarezii* Tembalang, *Kappaphycus alvarezii* Maumere, *Kappaphycus striatum* and *Eucheuma spinosum*. The growth of *Eucheuma* spp was measured every 7 days until harvesting time which is 45 days. Initial seed weight was 100 g and the number of seeds per line were 200. Purphoses sampling done by 5 samples per line for analysis of fresh weight, dry weight, carragenan content and incident disease.

Seaweed was planted from August to September 2012. The seed used was introduced from seed bed in Gerupuk Bay area and Mid-Lombok Regency. Data of weight increase was calculated using following formulas:

Increase of weight = weight on t (time) – initial weight Growth rate (% per day) = $((\ln W_t - \ln W_o)/t) \times 100$

Analysis of carrageenan was done by extracting seaweed, cooked with pressure on temperature of 100°C for 2 to 3 hours until seaweed turned into a gel, with alcohol. The analysis of carrageenan was done in Immunology Lab, Faculty of Math and Sciences, Universitas Mataram.

Results and discussion

The result of measurement of four 4 seaweed species cultivated on four ropes on this study is shown on the table 1.

Table 1. Average weight of seaweed (g) cultivated between August and September 2012.

No.	Species	Day-									
NO.	Species	0	7	14	21	28	35	42	49		
1.	E. cottonii (tembalang)	100	146	178	207	156	112	130	140		
2.	E. cottonii (maumere)	100	148	166	120	103	82	99	103		
3.	E. spinosum	100	146	178	213	262	300	337	374		
4.	E. striatum (sacol)	100	146	179	210	169	126	138	148		

Weighing was done for each clump with 180 times of repeat per unit

According to the data, decreasing weight is experienced by *E. cottonii* Tembalang, *E. cottonii* Maumere, and *E. striatum*. This condition generally happens on day 28. The decreasing weight is caused by *ice ice* disease that caused seaweed thallus to break. The data of weight increase shows that *E. Spinosum* production reaches 74 Kg per 100 m².

Seaweed species of *E. spinosum* constantly experiences increasing weight although this species is attacked by *ice ice* disease. *Eucheuma spinosum* also has the highest growth compared with other species of seaweed. The data also show that there are some seaweed clumps from species of *E.* cottonii tembalang and maumere, and *E. striatum* gone because of *ice ice* attack.

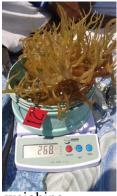


Figure 1. Seaweed weighing

Following are the ratio between wet and dry weights of each seaweed species on different planting days. Sample was taken from ropes for research purpose. Drying was done on the top of *para-para* for 3 days.

Table 2. The ratio between wet and dry weights of seaweed.

Weight measurement (g)													
No.	Seaweed	I	Day 2	28	l	Day 3	35	I	Day 4	12		Day	49
		W	D	D/W	W	D	D/W	W	D	D/W	W	D	W/D
1	E. cottonii (tembalang)	156	20	0.12	112	15	0.13	130	13	0.1	140	13	0.09
2	E.cottonii (maumere)	103	14	0.13	82	11	0.13	99	9	0.09	103	9	0.08
3	E.spinosum	262	42	0.16	300	49	0.16	337	54	0.16	374	60	0.16
4	E. striatum (sacol)	169	21	0.12	126	17	0.13	138	16	0.11	148	15	0.10

Weighing was done for each clump with 180 times of repeat per unit

According to table above, it can be seen that the highest ratio between wet and dry weights is experienced by *E. spinosum*. The ratio between wet and dry weights can represent water content in seaweed. The higher the ratio, the lower water content in seaweed, a fact which means that the higher dry seaweed production.

The result of measurement of seaweed sample done in Immunology Lab, Faculty of Match and Sciences, Universitas Mataram is shown on following figure 2.

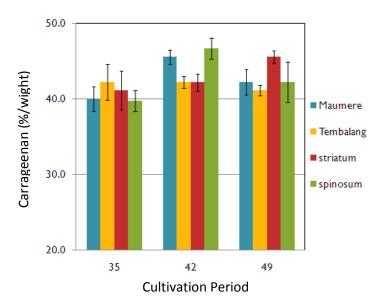


Figure 2. Percentage of Carrageenan in many Species and Cultivation Periods

The content of seaweed carrageenan in *E. spinosum* and *K. alvarezzi* strain maumere cultivated for 42 days tends to be higher compared with that of cultivated for 35 and 49 days, whereas the carrageenan content in *E. striatum* tends to increase gradually until day 49 of cultivation. Carrageenan content of *K. alvarezzi* (tembalang) tend to be stabile on the three cultivation periods.

Conclusion

K. alvarezii, K. striatum and E. spinosum can grow in Kaung. E. spinosum is more adaptable to Kaung ecology, and can be grown throughout the year.

References

Anggadireja, J.T.S. Irawati, Kusmiyati., 2006. *Potensi dan Manfaat Rumput Laut Indonesia Dalam Bidang Bidang Farmasi*. Deputi Bidang Pengkajian Ilmu Dasar dan Terapan BPPT, Jakarta.

Blink, L.R., 2004. *Physiology and Biochemistry of Algae*. In Manual of Physiology. Academic Press. New York.

BPS 2010. Nusa Tenggara Barat Dalam Angka.

Ditjenkan Budidaya, 2005. *Profil Rumput Laut Indonesia*. Direktorat Perikanan Budidaya, Departemen Kelautan dan Perikanan. Jakarta.

Pemda NTB, 2011. Evaluasi dan Pencapaian Program Pijar NTB.

Sunarpi, Jupri A., dan Julisaniah NI, 2009. Pengembangan Pupuk Cair Ramah Lingkungan Berbasis Rumput Laut Alam Nusa Tenggara Barat Untuk Mendukung Sistem Pertanian Berkelanjutan. Laporan Hasil Penelitian Hibah Startegis Nasional. Lemlit Universitas Mataram.

Table 2. Percentage of sperm motility following treatment with different Noni (*morinda citrifolia*) extract level after cooling.

Time of cooling (h)	Noni extractlevels (%)	Mean ± SD
0	0	$\frac{69.00 \pm 2.11^{b}}{69.00 \pm 2.11^{b}}$
O .	10	$73.00 \pm 3.50^{\text{ a}}$
	20	$68.00 \pm 4.22^{\text{b}}$
	30	$67.50 \pm 4.25^{\text{b}}$
24	0	62.00 ± 4.22^{a}
	10	64.50 ± 3.69^{a}
	20	$56.00 \pm 3.94^{\rm \ b}$
	30	$53.50 \pm 2.42^{\text{ b}}$
48	0	52.00 ± 2.58 a
	10	$54.00 \pm 3.94^{\mathrm{a}}$
	20	$43.50 \pm 2.42^{\text{ b}}$
	30	42.00 ± 2.58 b

^{a, b} highly significant different (P<0.01).

Discussion

The results showed that the level of Noni (*morinda citrifolia*) extract had very significant effect (P<0.01) on sperm motility percentage in 0, 24 and 48 h of cooling. Levels 10% Noni (*morinda citrifolia*) extract produced the highest percentage of motility of spermatozoa, followed by the level of 0%, 20%, and 30% Noni (*morinda citrifolia*) extracts. Sperm motility decreased gradually as the duration of cooling. The longer the cooling the lower the sperm motility and viability. Decrease in the percentage of sperm motility after cooling is due to fewer sperm that have sufficient energy reserves to be used to move, as long as the cooling sperm remain metabolic activity. Exogenous substrates during cooling required for mitochondrial ATP availability is limited. Secondary metabolites materials required for energy and buffer as well as antioxidants to protect sperm from damage due to the accumulation of CO₂, lactic acid and free radicals (Kaeoket et.al., 2011; Tavilani et. al., 2008). It can be concluded that thebestNoni (*morinda citrifolia*) extract level for resulting optimal sperm motility was 10%.

References

Kaeoket, K., P. Chanapai, Junchiyaphoom and P. Chanapiwat,2011. The effect of using longterm and shorttermextenders duringcoolingprocess on the quality of frozenboar semen. Thai Vet. Med.J.41(3): 283 – 288.

Tavilani H.,M.T., Goodarzi, A. Vaisi-raygani, S. Salimiand T. Hassanzadeh, 2008. Activity of antioxidantenzymes in semnalplasma and their relationship with lipidperoxidation of spermatozoa. Int. Braz. Urol. J.34(4): 485 – 491.

Materials and Methods

This research has been carried out in North Sulawesi by using the survey method. The district has been determined by purposive sampling the district has the largest cattle population is South Minahasa and Bolaang Mongondow. Respondents in this study were 150 farmers for the South Minahasa District and 65 respondents to Bolaang Mongondow. The data collected is primary data and secondary data. Analysis of the data used is descriptive analysis and multiple regression analysis.

Results and Discussion

Cattle farmers in the research area has largely been developing cattle integrated with coconut plantations. System integration cattle and crops are often considered as a step forward. Land held by farmers in the area of research, ranging from 0.5-3 ha. Most of the land owned by the farmers according to the results of research conducted Rundengan (2013), ranging between 1-1.5 ha. Land tenure is very supportive of efforts for the development of local cattle, because according to Hermawan & Utomo (2012) of local cattle is a strategic commodity with multiple functions for dry land farmers. The development of beef cattle cannot be separated from the development of agriculture and plantation (Hartono, 2012). Results of regression analysis, income from cattle farming, which is integrated with coconut and corn accordance Rundengan (2013) can be seen in the following equation:

$$Y = 779,524 + 7,295,119LH - 3.24PKN - 1.75PO - 1.16PS - 0.14TKS....(1)$$

Income from the cattle farming is affected by the plantation area. Increasingly plantation area (LH), then the income tends to increase (Equation 1). Coconut is a commodity that is in separable from public life. Coconut dubbed the tree of life, because of coconut has aroleto people's lives, from the fulfillment of social needs, culture until the economic interests.

Equation (1) shows the cost to feed (PKN) the higher cause income tend to decline. The indication, with an integrated cattle farming, the waste from the farm under the coconut trees can be used as feed. Local cattle farming, managed by farmers without the cost of feed (zero cost). Advantages of application integration pattern can be obtained because of the synergy between activities, which in turn almost no resource is wasted (zero waste). Farmers for crops has not optimally utilize agricultural waste even some farmers burning the waste which can affect the loss of main nutrients, such as NandP, kill organisms in the soil and producesCO2gasthat damage the environment.

Increase in the cost of organic fertilizers (PO) cause income tend to decline (Equation 1). According to Haryono (2013), the use of compost as organic fertilizer, a choice in favor of an increase in the productivity of food crops. Development of local cattle, will have a negative impact on environment, due to the waste generated from the cattle farming. According Harlia et al. (2012), waste from cattle is increasing, causing nature is not able to decipher, absorb and neutralize the waste. Local cattle, for farmers, in this case, serves as a producer of manure (Roehani et al., 2005), as an organic fertilizer raw materials. Baba et al. (2012) suggested that the integration of cattle corn, provide many advantages for both farmers (increase income and food security), local cattle (sustainability feed), and land (conservation land). Land degradation at this time, a problem faced by many countries (Herrick et al., 2010), including our country. Waste utilization of local cattle, as organic fertilizer, which is useful to the plant, as well as improve the

SCIENTIFIC PROMOTION CO., LTD.

บริษัท ใชแอนติฟิคโปรโมชั่น จำกัด

Betagro Public Co., Ltd.

บริษัท เบทาโกร จำกัด (มหาชน)

History

Founded in 1967 with a registered capital of Baht 10 million, the Betagro Group began as a single entity, Betagro Company Limited, to produce and distribute animal feed. Its headquarters were originally located in Pom Prab, Bangkok, and its first feed mill in Prapadaeng, Samut Prakan province.

Betagro Group focuses on the food business in both domestic and international markets with an integrated agro-industrial production base. Betagro classifies its operation in five major categories:

The Thailand Research Fund; TRF

สำนักงานกองทุนสนับสนุนการวิจัย; สกว.

The Thailand Research Fund (TRF) was established in response to the 1992 Research Endowment Act and although it is part of the government system, it lies outside the government administrative bureaucracy. This freedom allows great efficiency in research support. Since its creation, TRF has remained focused on its main duty: supporting at both local and national levels the creation of a knowledge-base to help those tackling societal problems.

AGRICULTURAL RESEARCH DEVELOPMENT AGENCY (PUBLIC ORGANIZATION)

สำนักงานพัฒนาการวิจัยการเกษตร (องค์การมหาชน)

Background

Due to the economic crisis in B.E. 2540 (1997), the government has set austerity measure in spending the budget. Resulting many projects has to balk. The government has agreed to borrow the funding from abroad to continue the project. The Cabinet has approved to abide by the conditions of policy matrix. Loan program to restructure the agricultural sector to enhancing the competitiveness of the export on 6th July B.E. 2542 (1999)

Agricultural Research Development Agency (Public Organization), ARDA was established as an autonomous agency in the operating fund as the decree establishing the Agricultural Research Development Agency that become effective from 15th March B.E. 2546 (2003) (with the initial capital of 3,000 Million Baht)

MISSION

- PROMOTE AND SUPPORT AGRICULTURAL RESEARCH
 - PROMOTE AND SUPPORT PERSONNEL DEVELOPMENT IN AGRICULTURAL RESEARCH
 - **PROMOTE AND RESEARCH AND DEVELOPMENT,** DISSEMINATION AND AGRICULTURAL RESEARCH INFORMATION TECHNOLOGY

ARDA

CPF (Thailand) Public Co., Ltd.

บริษัท ซีพีเอฟ (ประเทศไทย) จำกัด (มหาชน)

Charoen Pokphand Foods Public Company Limited is the leading agro-industrial and food conglomerate in the Asia Pacific region. The Company operates in both the livestock (swine, broilers, layers, and ducks) and aquaculture (shrimp and fish) businesses. The vertically integrated businesses incorporate the manufacturing of animal feed, animal breeding and animal farming; meat processing, the manufacturing of semi-cooked meat and fully-cooked meat; food products and ready meal products, as well as the meat and food retailer and restaurant businesses.

Feed Business

Farm Business

Food Business

Lannacom Co., Ltd.

บริษัท ลานนาคอม จำกัด

บริการให้คำปรึกษา ออกแบบ จำหน่าย ติดตั้ง ซ่อมแซมและบำรุงรักษา ที่เกี่ยวกับระบบเทคโนโลยีสารสนเทศ และการสื่อสาร ได้แก่ โครงสร้างพื้นฐานของระบบเครือข่ายคอมพิวเตอร์ ระบบรักษาความปลอดภัยระบบเครือข่าย คอมพิวเตอร์ ระบบโสตทัศนูปกรณ์สารสนเทศ และระบบโทรศัพท์

Dutch Mill Co., Ltd.

บริษัท ดัชมิลล์ จำกัด

Office of the Higher Education Commission; OHEC

สำนักงานคณะกรรมการการอุดมศึกษา; สกอ.

Iken Scientific Limited Partnership

ห้างหุ้นส่วน จำกัด ใอ เค้น ใชเอนทิฟิค

Behn Meyer Chemicals (T) Co., Ltd.

บริษัท เบ็นไมเยอร์ เคมีคอลส์ (ที) จำกัด

Beef Cluster Cooperative Limited

สหกรณ์เครื่อข่ายโคเนื้อ จำกัด

K.M.P. BIOTECH CO., LTD.

5th SAADC 2015

The 5th International Conference on Sustainable Animal Agriculture for Developing Countries October 27-30, 2015, Dusit Thani Pattaya Hotel, THAILAND

SPONSORS

