FASCIOLOSIS IN BALI CATTLE (BOS SONDAICUS / BOS JAVANICUS) IN RICE FIELDS WITH DIFFERENT RAINFALLS

by Maskur Maskur

Submission date: 15-Sep-2022 06:09AM (UTC+0700)

Submission ID: 1899985657

File name: 8625-A-2019.pdf (221.21K)

Word count: 1529
Character count: 7915

International Journal of Current Advanced Research

ISSN: O: 2319-6475, ISSN: P: 2319-6505, Impact Factor: 6.614

Available Online at www.journalijcar.org

Volume 8; Issue 02(B); February 2019; Page No. 17265-17266

DOI: http://dx.doi.org/10.24327/ijcar.2019.17266.3228

FASCIOLOSIS IN BALI CATTLE (BOS SONDAICUS / BOS JAVANICUS) IN RICE FIELDS WITH DIFFERENT RAINFALLS

Surana^{1*}, Adji SantosoDradjat², Made Sriasih², Sulaiman Ngongu Depamede²,Maskur²,Djoko Kisworo² and Kurniasih³

¹Balai Karantina Pertanian Kelas I MataramWest Nusa Tenggara, ²Faculty of Animal Husbandry, Universitas Mataram, West Nusa Tenggara, Indonesia, ³Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia

ARTICLE INFO

Article History:

Received 4th November, 2018 Received in revised form 25th December, 2018 Accepted 18th January, 2018 Published online 28th February, 2019

Key words:

Fasciolosis, rainfall, snails (Limnaea sp.), Bali cattle.

ABSTRACT

The purpose of this research was to determine the infestation of cattle suffering from Fasciolosis in rice fields in rainfall level. This research consisted of evaluating the water depth of rice fields with snail populations as intermediate hosts of Fasciolosis and egg per gram (EPG) examination on changes in rainfall. Twenty Bali cattle were examined EPG every month by sedimentation test for four consecutive months with changes in rainfall. Rainfall data is obtained from BMKG West Lombok. The results showed that water depth is 0-10 cm, 10-20 cm, 20-30 cm with the number of snails 2.3±0.49 tails/m2, 5±1.15 tails/m2, 6±1.73 tails/m2 respectively are positively correlated (R=0.93),Y=1.86x+0.17. Precipitationfrom September to December was 19.5 cm, 24.3 cm, 50.4 cm, 32.3 cm. Stool examination results (EPG±sd) in December to March were 10.50±10.22 EPG, 14.75±9.65 EPG, 21.80±19.95* EPG and 5.35±6.71* EPG and a noticeable difference in EPG (P<0.05) in February and March. It was concluded that the increase of Fasciolosis occurs due to an increase in the volume of rainfall as a medium for swimming mirasidium and cercaria to breed in snails (Lymnaea sp.), then when rainfall decreases followed by rapid drops of Fasciolosis.

Copyright©2019 Surana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Fasciolosis is a disease caused by infection of Fasciola hepatica and Fasciola gigantica. Ruminants live in field and humid area is easily infected with Fasciola spp. (Astiti et al., 2015). Fasciolosis infestation is divided into three stages, that are, accute, moderate, and chronic infection which is usually asymptomatic (Adrien et al., 2013). More than 400 eggs in one gram of feces is obtained in accute infection of fasciolosis, in moderate infection is 101-400 egg/gram, and 1-100 eggs per one gram of feces is obtained in mild infection (Balen et al., 2007).

Prevalence of Fasciolosis in Lombok island, Indonesia reached 96.2%, however the number of egg per gram feces (EPG) was low (1-8 EPG or 5 EPG) in average, based on sedimentation test (Astiti and Panjaitan, 2012). High prevalence and low infestation were usually asymptomatic, so that the farmer did not notice for better management and treatment. Fasciolosis was based on the rainfall, climate, irrigation, and the presence of snails (*Lymnaea* sp.) as the intermediate host (Ardo *et al.*, 2013). This research was to get information about snail population, irrigation depth, and EPG.

*Corresponding author: Surana

Balai Karantina Pertanian Kelas I MataramWest Nusa Tenggara,

MATERIALS AND METHODS

Population of snail (*Lymnaea* sp.) as the intermediate host of fasciolosis was counted with quadrant method in the different water depth or ricefield such as 0-10 cm, 10-20 cm, and 20-30 cm, the formula of counting was D= N/S (D= density of population, N= individual number or species, S= the habitat). The result was then analyzed by statistic method to identify the correlation between water depth and the amount of snail (*Lymnaea* sp.) (Adrien *et al.*, 2013). Twenty Bali cattle were counted monthly, the presence of *Fasciola* sp. with sedimentation method (Parfitt and Bank, 1977) during four months. This method could detect infection of *Fasciola* sp. After prepatent period for 10-14 weeks (Ardo *et al.*, 2013). Result of egg per gram feces was analyzed by statistic, and evaluated with the rainfall during previous three months as prepatent period.

RESULTS AND DISCUSSION

Snail (*Lymnaea* sp.) population in the water depth of 20-30 cm was the most abundant. The water depth was correlated positive to snail population, y=1.86x+0.71 ($R^2=0.93$) in the water depth of 0-10 cm, 10-20 cm, 20-30 cm, getting snail (*Lymnaea* sp.) number of 2.3 ± 0.49 , 5 ± 1.15 snail/m², 6 ± 1.73 snail/m² (Fig 1).

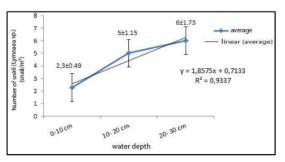


Figure 1 The correlation of water depth and snail number

Infestation of *Fasciola* sp. needs a good environment for their life cycles such as: irrigation, rainfalls, the presence of snail (*Lymnaea* sp.) as the intermediate host (Mc Kay, 2007; Ardo *et al.*, 2013).

Snail (Lymnaea sp.) entered the mud until 30 cm depth, they got their food from their fat deposit. Until 6 weeks then they came back to the surface area to shed the eggs, 1000-1200 eggs/month or 200-300 eggs/week (Rudy, 2010). The number of EPG of 20 cattle per month during four months was positively correlated to the rainfall Y = 0.32x + 2.96 ($R^2 = 0.39$) (Fig 2).

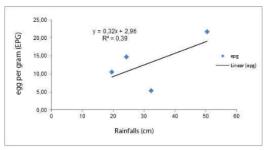


Figure 2 Correlation between the infestation of Fasciola sp. and the rainfall

The number of EPG from December- February showed that the average egg per gram (EPG) examination continued to increase from 10.50 ± 10.22 EPG, 14.75 ± 9.65 EPG and 21.80 ± 19.95 EPG. This was caused by September- November as the prepatent period with increasing rainfall from 19.5 cm, 24.3 cm and 50.4 cm respectively based on BMKG West Lombok, Indonesia, 2016. Furthermore in December there was a significant decrease in rainfall (P <0.05) from 50.4 cm to 32.3 cm and caused a decrease in EPG number in February to March from 21.80 ± 19.95 EPG to 5.35 ± 6.71 EPG which was analyzed by statistical analysis of single factors (Fig3)

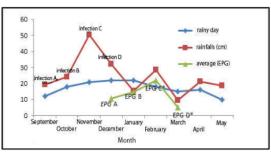


Figure 3 Infestation of Fasciola sp.(EPG) and rainfalls

The percentage of positive cases of Fasciolosis tends to be higher in the rainy season than in the dry season (Kusumamiharja, 2005). Myracidium could easily reach the snail (Lymnaea sp.), and cercariae attached the grass and other vegetation to become metacercaria (Wymann, 2005). When metacercaria are swallowed by cattle while eating grass, metacercaria become young heart worms, penetrate the liver and destroy liver tissue (Kahn and Line, 2010). Metacercariae caused fibrosis (Marcos et al, 2007) and become adult in the bile duct and can block the duct (Wymann, 2005).

CONCLUSION

The increase of rainfall was positively correlated to the increase of Fasciolosis on Bali cattle in Lombok Island, Indonesia.

Acknowledgement

Research was sponsored by DIPA BLU, Mataram University in 2017 No. 753 G/UN 18/LPPM/2017.

References

Admassu B, Shite A, and Knife G. (2015). A review on bovine fasciolosis. European Journal of Biological Sciences. 7:139-146

Adrien ML, Schild AL, Marcolongo-Pereira C, Fiss L, Ruas LJ, Grecco FB, and Raffi MB. (2013). Acute fasciolosis in cattle in Southern of Brazil. Pesquisa Veterinaria Brasileira. 33: 705-709

Ardo MB, Aliyara YH, and Lawal H. (2013). Prevalence of bovine fasciolosis in mayor abattoirs of Adamawa State Nigeria. Bayero Journal of Pure and Applied Sci. 6: 12-16.

Astiti LGS, Dradjat AS, and Sriasih M. (2015). A cross sectional study on Fasciola sp, as a zoonotic disease agent in Bali cattle farmers. Indian Journal of Veterinary Research. 24:8-10.

Balen J, Zhao ZY, Williams GM, McManus DP, Raso G, Utzinger J, Zhou J, and Li YS. (2007). Prevalence, intensity and associated morbidity of Schistosoma japonicum infection in the Dongting Lake Region, China. Bulletin of the World Health Organization. 85: 519-526. https://doi.org/10.2471/BLT.06.034033

Kahn C.M and Line S. (2010). The Merck Veterinary Manual. Merck & Co., Inc. Whitehouse Station.NJ, USA.

Kusumamiharja S. (2005). Parasites and parasitosis in livestock and pets in Indonesia.Research Center for Biotechnology, Institut Pertanian Bogor, Bogor.

Marcos LA, Yi P, Machicado A, and Andrade R. (2007). Hepatic fibrosis and Fasciola hepatica infection in cattle. Journal of Helminthology. 81:381-386.

Mc Kay S. (2007). Fluke: a burgeoning problem. Irish Veterinary Journal. 60: 622-625.

Parfitt JW and Bank AW. (1977). A method for counting Fasciola eggs in cattle faeces in the field. Vet. Rec. 87: 180-182.

Rudy A. (2010). Effect of garlic extract on mortality of golden snail. Jurnal Floratek 5:172-180.

Subhan A. (2016). Population and distribution of golden snail (Pomacea canaliculata L.) as feed resources for alabio duck in south kalimantan. Proceedings of the National Seminar on Agricultural Technology Innovation.

Wymann MN. (2005). Calf mortality and parasitism in periurban livestock production in Mali. PhD Thesis, University of Basel, Faculty of Science.

FASCIOLOSIS IN BALI CATTLE (BOS SONDAICUS / BOS JAVANICUS) IN RICE FIELDS WITH DIFFERENT RAINFALLS

ORIGINALITY REPORT

11 %
SIMILARITY INDEX

10%
INTERNET SOURCES

9%
PUBLICATIONS

3% STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

2%

★ subbiocode.net

Internet Source

Exclude quotes

Exclude bibliography

On

Exclude matches

Off