Correspondensi BIODIVERSITAS Erwan Via OJS System

1. Submit paper ke BIODIVERSITAS

ERWAN, Honey quality from the 🛛 🗙 🕂		\sim	- 0 ×
\leftrightarrow \rightarrow C $($ smujo.id/biodiv/authorDa	ashboard/submission/12166	6 1	: 🌑 🗆
Biodiversitas Journal of Biological Diversity	Tasks 0 G English	• View Site	erwan 🍐
	12166 / Erwan et al. / Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps	Library	
Submissions	Workflow Publication		
	Submission Review Copyediting Production Submission Files Q. Sear Image: Market Stress Section 1000000000000000000000000000000000000	ch	
	Download All Fi	les	
	Pre-Review Discussions Add discussi	on	
	Name From Last Reply Replies C	losed	
	No Items		

2. Proses review paper

ERWAN, Honey quality from the 🗆 🗙 🕂		\sim	- 0 ×
\leftrightarrow \rightarrow C \square smujo.id/biodiv/authorD	ashboard/submission/12166	Ê	☆ 🛛 🏐 :
Biodiversitas Journal of Biological Diversity	Tasks 0 Q	English 💿 View	/ Site 🔺 erwan 📩
	Submission Review Copyediting Production Round 1 Round 2 Round 3 Round 4 Round 5 Round 1 Status New reviews have been submitted and are being considered by the editor.		
	Notifications		
	[biodiv] Editor Decision 2022-	-09-27 03:03 AM	
	(biodiv) Editor Decision 2022-	-10-02 06:21 AM	
	[biodiy] Editor Decision 2022-	-11-01 03:35 AM	
	[biodiv] Editor Decision 2022-	-11-12 12:14 AM	
	[biodiv] Editor Decision 2022-	-11-18 09:34 AM	

ERWAN, Honey quality from the 🛛 🗙 🕂					~	-	٥	×
← → C	board/submission/12166				Ê	☆	u	:
Biodiversitas Journal of Biological Diversity Ta	usks 🕕			English	👁 View	Site	🛔 erw	ran
	Review Discussions			Add discu	ussion			
	Name	From	Last Reply	Replies	Closed			
	<u>Revision Submition</u>	erwan 2022-10-01 01:30 PM	-	0				
	<u>Ask reviewer comments</u>	erwan 2022-10-02 07:00 AM	-	0				
	<u>Revision Submition</u>	erwan 2022-11-02 03:39 PM	-	0				
	Uncorrected Proof	dewinurpratiwi 2022-11-09 09:11 AM	erwan 2022-11-10 11:16 AM	1				
	BILLING	dewinurpratiwi 2022-11-09 09:19 AM	dewinurpratiwi 2022-11-17 07:10 AM	2				
nttps://smujo.id/biodiv/authorDashboard/submission/1216	6#							

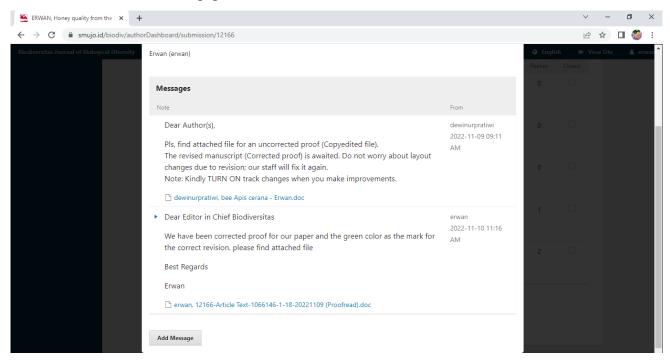
3. Informasi revisi paper dari Editor Jurnal Biodiversitas

4. Submit revisi pertama paper ke system Biodivesitas

ERWAN, Honey quality from the 🛛 🗙 🗧	+		~ - 0 ×
\leftrightarrow \rightarrow C $rightarrow$ smujo.id/biodiv/auth	or Dashboard/submission/12166		🖻 🖈 🔲 🍔 i
Biodiversitas Journal of Biological Diversity			🛛 English 🐵 View Site 💧 erwan
	Revision Submition	X	
	Participants <u>Edit</u>		Add discussion
	Smujo Editors (editors)		Replies Closed
	Ayu Astuti (ayu)		0
	Erwan (erwan)		
	Messages		0
	Note	From	
	Dear Editor in Chief Biodiversitas	erwan	0
	We have been submition the revision for our paper	2022-10-01 01:30 PM	
	Best regards,		
	Erwan		1
	Add Message		
			2 🗆

ERWAN, Honey quality from the 🗆 🗙 🕂			\sim	-	٥	
\leftrightarrow \rightarrow C \cong smujo.id/biodiv/authorDash	aboard/submission/12166		Ê	☆	•	
Biodiversitas Journal of Biological Diversity	Iasks () Notifications	😌 English 🛛 📽	View S	ite	占 erw	•
	[biodiv].Editor Decision	2022-09-27 03:03 AN				
	[biodiv] Editor Decision	2022-10-02 06:21 AM				
	(biodiv) Editor Decision	2022-11-01 03:35 AM				
	[biodiv] Editor Decision	2022-11-12 12:14 AN				
	(biodiv) Editor Decision	2022-11-18 09:34 AN				
	Reviewer's Attachments	Q Search				
		September 26, 2022				
	Revisions	Q Search Upload File				
	Image: International Content of	October Article Text 1, 2022				

5. Konfirmasi revisi ke Editor Biodiversitas melalui System


ERWAN, Honey quality from the 🗆 🗙	+			\sim	-	٥	×
\leftrightarrow \rightarrow C \textcircled{a} smujo.id/biodiv/auth	horDashboard/submission/12166			Ê	☆	0 🖏	È
Biodiversitas Journal of Biological Diversity	Ask reviewer comments	×	English	● Vie	w Site	<u> </u>	erwan ^
	Participants Edit Smujo Editors (editors) Ayu Astuti (ayu) Erwan (erwan)		Add discussion Replies Clo 0				
	Messages Note	From	0 (
	Dear Editor in Chief Biodiversitas We receive email from Editor Biodiversitas for our paper required revision, but in the attached file in the email we can't found comments from reviewers or editor for our paper and the paper is same with the revision that we have been submit to smujo system. Can	erwan 2022-10-02 07:00 AM	0				
	your help us to explain or send again the comments for our paper ? Best regards,		1 [
	Erwan Add Message		2				

6. Submit revisi kedua paper ke system Biodiversitas

ERWAN, Honey quality from the 🛛 🗙 🕇			~ - 0 ×
\leftrightarrow \rightarrow C $\$ smujo.id/biodiv/author	Dashboard/submission/12166		🖻 🕁 🔲 🎒 🗄
Biodiversitas Journal of Biological Diversity	Revision Submition	×	English View Site
	Participants Edit Smujo Editors (editors) Ayu Astuti (ayu) Erwan (erwan)		Add discussion Replies Closed 0
	Messages Note	From	0
	Dear Editor in Chief Biodiversitas We have been revising of manuscript according to reviewer comments and is made for red color	erwan 2022-11-02 03:39 PM	0
	Best regards, Erwan		1
	Add Message		2

📉 ERWAN, Honey quality from the 🗆 🗙 🕂			× -	- 0	×
\leftrightarrow \rightarrow C $\hat{\bullet}$ smujo.id/biodiv/authorDa	shboard/submission/12166		6 \$	0) E
Biodiversitas Journal of Biological Diversity	Tasks 0	😌 English 🗶 🖤	View Site	Å en	wan
	Notifications				
	[biodiv] Editor Decision	2022-09-27 03:03 AM			
	[biodiv] Editor Decision	2022-10-02 06:21 AM			
	[biodiv] Editor Decision	2022-11-01 03:35 AM			
	[biodiv] Editor Decision	2022-11-12 12:14 AM			
	[biodiv] Editor Decision	2022-11-18 09:34 AM			
	Reviewer's Attachments	Q Search			
	Reviewer's Attachments	Q Search			
	₪ 1065355-1 , 12166-Article Text-1062944-1-4-20221004.doc	October 31, 2022			
	Revisions	Q Search Upload File			
	► 🗟 1065582-1 Article Text, A-12166-Article Text-1062944-1-4-20221004 Second REVISION.doc	November Article Text 2, 2022			

7. Submit Proofread paper Biodiversitas

erwan apis <apiserwan@gmail.com>

[biodiv] Submission Acknowledgement

2 pesan

Ahmad Dwi Setyawan <smujo.id@gmail.com> Kepada: Erwan <apiserwan@gmail.com> 6 September 2022 pukul 19.52

Erwan:

Thank you for submitting the manuscript, "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps" to Biodiversitas Journal of Biological Diversity. With the online journal management system that we are using, you will be able to track its progress through the editorial process by logging in to the journal web site:

Submission URL: https://smujo.id/biodiv/authorDashboard/submission/12166 Username: erwan

If you have any questions, please contact me. Thank you for considering this journal as a venue for your work.

Ahmad Dwi Setyawan

Biodiversitas Journal of Biological Diversity

erwan apis <apiserwan@gmail.com> Kepada: Ahmad Dwi Setyawan <smujo.id@gmail.com> 6 September 2022 pukul 19.55

Dear Editor in Chief Biodiversitas

Thanks very much for the information and we hope our paper can be accepted and published in Biodiversitas [Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

COVERING LETTER

Dear Editor-in-Chief,

I herewith enclosed a research article,

Title:

Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps

Author(s) name: Erwan and Agussalim

a wan and Agussanni

Address

(Fill in your institution's name and address, your personal cellular phone and email) Faculty of Animal Science, University of Mataram, Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp.:

For possibility publication on the journal:

(fill in *Biodiversitas* or *Nusantara Bioscience* or *mention the others*) Biodiversitas

Novelty:

(state your claimed novelty of the findings versus current knowledge)

The novelty of our study was the honey quality produced by the bee *Apis cerana* and the honey potency which are produced by sugar palm and coconut saps which have not studied by another researcher especially in Indonesia. Therefore, this manuscript is very informative for the beekeepers, researchers or scientist, and honey consumers.

Statements:

This manuscript has not been published and is not under consideration for publication to any other journal or any other type of publication (including web hosting) either by me or any of my co-authors. Author(s) has been read and agree to the Ethical Guidelines.

List of five potential reviewers

(Fill in names of five potential reviewers and their **email** addresses. He/she should have Scopus ID and come from different institution with the authors; and from at least three different countries)

- Dr. Jati Batoro (Department of Biology, Faculty of Mathematic and Natural Sciences, Brawijaya University); Email: jati batoro@yahoo.co.id; Scopud ID: 57204421874
- Dr. Dewi Masyithoh, S.P., M.Pt. (Faculty of Agriculture, Islamic University of Malang, Indonesia), Email: <u>masyithoh.dewi@unisma.ac.id</u>, Scopus ID: 57217108400
- Firman Jaya, S.Pt., MP. (Department of Animal Products Technology, Faculty of Animal Science, Brawijaya University, Indonesia), Email: <u>firmanjaya@ub.ac.id</u>, Scopus ID: 36800743500

Place and date:

Mataram, 29th August 2022

Sincerely yours,

(fill in your name, no need scanned autograph) Dr. Ir. Erwan, M.Si.

Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps

ERWAN^{1,*}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahi No. 62, Mataram – 83125, Indonesia. Telp/Fax: +62370-633603/+62370-640592. *email: apiserwan@gmail.com ²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta – 55281, Indonesia

Manuscript received: DD MM 2016 (Date of abstract/manuscript submission). Revision accepted: 2016. (8 pt)

8 9 Abstract. One of the big problems when keeping of honeybees is the limited of sustainable feed, especially in the rain season. The objectives of this study were to evaluate the honey quality from the bee *A. cerana* based on the chemical composition, honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee *A. cerana* were divided into six treatments 10 11 12 13 consists of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the *A. cerana* were 14 moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), 15 16 hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be concluded that 17 honey quality is produced by sugar palm and coconut saps, and potential as the bee feed.

18 Key words: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

19 Running title: Honey quality of Apis cerana produced by sugar palm and coconut saps

20

1

2

7

INTRODUCTION

21 Honeybee of A. cerana is one of the bees from the Apis genus which is include the local bee which is spread in some 22 regions in Indonesia are Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 23 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by the beekeepers 24 25 26 27 using a traditional hives (for example using a coconut log hive) and semi modern hive (box hive without nest frame). Furthermore, several regions have been practices the beekeeping of the bee A. cerana has been reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok.

One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to 28 29 30 produce honey, bee bread, and royal jelly. The limitation feed is the very serious problem have been faced by the beekeepers because they have not area which is used to planted several plants which are used the feed source to produce the honeybees products. Honeybees feeds is divided into two types namely nectar and pollen, where nectar is obtained by 31 the foragers from the plant flowers (nectar floral) and nectar extrafloral which is obtained by the foragers from stalk and 32 leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by 33 34 using all body part and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting nectar and pollen from the plant flowers, the foragers is role as the pollinator agent by transporting pollen from the anther 35 to pistil so that the pollination process occurs. This process continuously done by the foragers until the honey stomach is 36 full by a nectar and their corbicula has been deposited by the pollen. This pollination which is impacts on the increasing 37 the plants productivity (; Pohorecka et al. 2014).

38 One of the strategies to produce the sustainability honey from the bee A. cerana by using a sap from the plants such as 39 sugar palm and coconut. Several studies have been conducted by using a sugar palm and coconut saps as the A. cerana 40 feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the A. cerana feed 41 can enhancing the production of honey cells and bee bread cells. Furthermore, Erwan et al. (2022) was also reported that 42 the use of sugar palm and coconut saps which each added by sugar palm pollen can improving the bee A. cerana 43 productivity such as increase the honey production, brood cells number, and colony weight. In addition, the study use of 44 extrafloral nectar namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed 45 which is resulting the honey chemical composition which are acceptable by Indonesian national standard and international 46 standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, the studied about the chemical

Commented [u1]: The introduction at least consists of 600

47 composition of honey from the bee *A. cerana* which are produced from the sugar palm sap, coconut sap and their honey 48 potency production from both sap sugar palm and coconut have not been studied. Therefore, the objectives of this study 49 were to evaluate the honey quality based on the chemical composition from the bee *A. cerana*, honey potency produced by 50 the coconut and sugar palm saps.

51

MATERIALS AND METHODS

52 Study area

53 This research has been conducted in the North Duman Village (8°32'10"S 116°09'32"E), Lingsar Sub-district, West 54 Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty of A. cerana colonies were divided 55 into six treatments and each five colonies per treatment as the replication. The saps were used in our study were obtained 56 from coconut (Cocos nucifera L.) and sugar palm (Arenga pinnata). The treatments in our study were sugar palm sap 57 without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + 58 sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen 59 (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by 60 sugar palm pollen (SCP1).

The technique was used to given sugar palm and coconut saps and sugar palm pollen was according to previously method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo were completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo were placed one meter of the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place colony to avoid the foragers to collect pollen and sap from the other treatments.

67 Proceduress

68 Honey quality

Honey from the *A. cerana* was harvested after beekeeping for three months by using a coconut and sugar palm saps. Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the *A. cerana* were evaluated based on the chemical composition consists of moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from Association of Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed by using a Layne-Enyon method and sucrose content was analyzed by a Luff Schoorl method were described by AOAC (2005). Diastase enzyme activity, hydroxymethylfurfural (HMF), and free acidity were analyzed based on the harmonised methods of the international honey commission (Bogdanovs 2009).

78 Honey production from sugar palm and coconut saps

Sugar palm and coconut saps each ten liters were used to measuring the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed in the plastic plate in front of the box hives at the distance of one meter. In addition, the honey production without using of sugar palm and coconut saps were measured for one year of the beekeeping which is used to calculate the contribution of sugar palm and coconut saps in honey production.

84 Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare which was calculated from the sap production per hectare multiplied by the tress number in one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap and then honey production was measured by cylinder glass

91 Data analysis

92 The data of honey quality, production potency of honey from sugar palm and coconut saps, honey production, and 93 production of saps were analyzed by using a descriptive analysis (Steel et al. 1997).

RESULTS AND DISCUSSION

95 Moisture content of honey

96 Honey is composed by water as the second largest of honey constituent and its ranging from 15 to 21 g/100 g, 97 depending on the plant types as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is 98 also affected by honey maturity level, processing postharvest, and storage condition (Da Silva et al. 2016). The honey 99 moisture is affecting the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific 100 gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the 101 temperature and humidity or depending on the season (rain and dry seasons) and honey moisture can increase during the 102 postharvest processing such as storage condition because honey is hygroscopic that can absorbs the moisture in the air (Da 103 Silva et al. 2016; Karabagias et al. 2014).

104 The recent study showed that the honey moisture from the bee A. cerana which was produced by sugar palm and 105 coconut saps and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted 106 by Indonesian national standard (SNI) where the moisture for beekeeping honey including the bee A. cerana and A. 107 mellifera is not exceed 22% (National Standardization Agency of Indonesia 2018) and higher compared to international 108 standard which is regulated by Codex Alimentarius is not exceed 20% (Bogdanov et al. 1999; Thrasyvoulou et al. 2018). 109 The variation of honey moisture of the bee A. cerana in our study may be caused by the different moisture content of both 110 saps from sugar palm and coconut, however in our study has not measured. The higher moisture content is requiring the long time to ripening of honey and process decreasing of honey moisture have been started by the bees when they are 111 taken a nectar from plant flowers or saps as the raw material to produce honey. Furthermore, small portion of moisture 112 113 content has been evaporated in the honey sack before transferred to the other bee which is working in the hive. This transfer is rapid depending on the temperature, colony strength, and nectar availability (Winston 1987). 114

115

Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee *A. cerana*

110	Tuble If The monst	are, reducing sugar, and succose et	Sintenits of noney noin the see in s	crana	
	Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)	
	SP0	21.60	65.24	2.86	-
	CP0	20.76	68.37	1.96	
	SCP0	21.40	64.55	2.51	
	SP1	21.80	62.78	3.42	
	CP1	21.58	65.37	1.72	
	SCP1	20.98	67.33	1.44	
117	411 1.2	1 24 4 11 11	1 11 (CDO)	54 5 11 11	1

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

122 Honey production process is started from the foragers collecting a nectar from the plant flowers or extrafloral nectar 123 and then stored in honey stomach. After that, the foragers will be transferring a nectar has been collected to the other bees 124 whom working to processing a nectar into honey in their mouth, then put in honey stomach and then is transferred to other 125 bees for several times until honey is ripening. A considerable of water amount will be evaporated in this process and this continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes (Winston 1987). The 126 honey moisture content in our study was differed to reported by Wang et al. (2021) that honey moisture from the bee A. 127 128 cerana which is collected from 42 different honeycombs from China is ranging from 17.03 to 18.44%, 18.65% for A. 129 cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) was also reported that the honey moisture was produced by 130 the A. mellifera bee by using a sugar palm and coconut saps is ranging from 19.34 to 20.94%. The different honey 131 moisture content has been reported are affected by the different geographical origins which is impact on the different plant 132 133 types can be growth each region, different environmental condition (temperature and humidity), and also different bee 134 species which is impact on the different ability to evaporate water in the honey.

135 Reducing sugar and sucrose contents of honey

Sugars in honey are composed by monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation (Da Silva et al. 2016; Kamal and Klein 2011). Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016; De La Fuente et al. 2011).

The recent study showed that the honey's reducing sugar from the bee *A. cerana* were beekeeping by using a sugar palm and coconut saps and their combination as the nectar source to produce honey is ranging from 62.78 to 68.37 % (Table 1). This honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1, but not acceptable for treatments SCP0, SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into

146 simple sugars. It is known that this enzyme is responsible for the conversion of sucrose into glucose and fructose. These 147 sugars are included in reducing sugar group and as the main component present in honey. In honey maturity process, the 148 sucrose is break down by the invertase enzyme into simple sugars simultaneously and water will be evaporated so that it 149 will be increasing the reducing sugar content. In addition, enzymes secreted by the worker bees are also can break down 150 the carbohydrate into simple sugars. Furthermore, other enzyme present in honey is diastase enzyme that role to break 151 down starch into simple sugars (Da Silva et al. 2016; Sihombing 2005). The honey reducing sugar in our study (Table 1) 152 was differed to reported by Erwan et al. (2020) that honey reducing sugar from the bee A. mellifera which was produced 153 by extrafloral nectar (sugar palm and coconut saps) is ranging from 60.15 to 73.69%. The different reducing sugar may be 154 affected by the different bee species which is impact on the different their ability to evaporate water present in honey 155 especially when they are convert the complex sugars into simple sugars and different season when done the study which 156 are related to temperature and humidity environmental.

157 The honey sucrose content from the bee A. cerana in our study is ranging from 1.44 to 3.42% (Table 1) and acceptable 158 by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency 159 of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 160 5% for blossom and honeydew honeys (Bogdanov et al. 1999; Thrasyvoulou et al. 2018). Naturally, sucrose present in 161 honey in our study is originated from sugar palm and coconut saps. The low of honey sucrose content in our study is 162 caused the honey which is harvested in mature condition that characterized by honey cells have been covered by the wax. 163 Furthermore, the invertase enzyme which is produced by the worker bees is actively break down of sucrose from saps into 164 simple sugars. There are two types of invertase enzymes which are produced by the worker bees, namely glucoinvertase 165 which is converts sucrose into glucose and fructoinvertase which is converts sucrose into fructose. White (1992) explained 166 these enzymes are mostly derived from the bee's secretion and only a small portion from the nectar, while the honeydew 167 from the insect's secretion is mostly contain invertase enzyme. The honey sucrose content in our study (Table 1) was 168 differed to reported by Erwan et al. (2020) that honey sucrose content from the bee A. mellifera was produced by 169 extrafloral nectar (sugar palm and coconut saps) is ranging from 4.21 to 4.40%%.

170 The honey sucrose content is a very important parameter to evaluate the maturity of honey to identifying manipulation, 171 where the high levels may be indicated adulterations by adding the several sweeteners such cane sugar or refined beet 172 sugar. In addition, also indicating the early of harvest, where sucrose is not completed transformed into fructose and 173 glucose, the bees feeding artificial in prolonged time by using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; 174 Escuredo et al. 2013; Tornuk et al. 2013). Honey is sugar solution that is supersaturated and unstable so it's easy to 175 crystallize. The honey crystallization is affected by concentration of glucose, fructose, and water. Fructose is the dominant 176 sugar present in honey from A. mellifera was produced by several plants as the nectar source which is used by workers to 177 produce honey such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey 178 was produced by Brassica napus. Rape honey is higher in glucose and lower in fructose which is impact on the rapidly 179 crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which 180 is impact on the different plant types can growth in each region and impact on the different sugars content from the nectar 181 which is produced by the nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; 182 Escuredo et al. 2014; Tornuk et al. 2013). Furthermore, sugars content in honey is influenced by climate (season, 183 temperature, and humidity), processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; 184 Tornuk et al. 2013).

185 Diastase enzyme activity and hydroxymethylfurfural of honey

The recent study showed that the diastase enzyme activity from the bee A. cerana honey was produced by the sugar 186 palm and coconut saps was ranging from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with the 187 minimum of 3 DN for the beekeeping honey including the bee A. cerana and A. mellifera (National Standardization 188 189 Agency of Indonesia 2018) and also acceptable by international standard has been regulated by Codex Alimentarius with the minimum 3 DN (Bogdanov et al. 1999; Thrasyvoulou et al. 2018). One of the honey characteristics is contain enzymes 190 which is originate from the bees, pollen, and nectar from plant flowers, but the mostly enzymes are added by the bees 191 when they are convert nectar into honey (Bogdanov et al. 1999; Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey 192 193 diastase enzyme activity in our study (Table 2) was differed to reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging 194 195 from 16.48 to 17.12 Schade unit.

196 Diastases is divided into α - and β -amylases which are the natural enzymes present in honey. The α -amylase is separate 197 the starch chain randomly in the central to produce dextrin, while the β -amylase to separate the maltose in the end chain. 198 Diastase enzyme content in honey is influenced by nectar source (floral and extrafloral nectars) to produce honey and 199 honey geographical origins which are impact on the different chemical composition of the nectar can be produced by the 191 plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species 192 is also influencing the activity diastase because it's related to the distance and the flowers plant numbers can be visited by 192 the foragers when they are collecting nectar and pollen were using to produce honey and bee bread (Da Silva et al. 2016).

203 Generally, diastase enzyme is role to break down the complex sugars into simple sugars. This enzyme is role to digest 204 of starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or thermolabile. Thus, this 205 condition can be used to evaluate of overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, the 206 diastase activity is also used to evaluate honey age which is related to storage time and the temperature because the 207 diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and 208 Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed to reported by 209 Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from Hainan province (China) was 6.70 Göthe. 210 Furthermore, also was differed to reported by Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling 211 Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activity of honey from A. cerana were 212 reported by previously researchers are influenced by the different plant types as the nectar source to produce honey, 213 different sugars content, and different geographical origin.

Furthermore, the HMF of A. cerana honey was produced by the sugar palm and coconut saps in our study was ranging 214 215 from 2.24 to 5.81 mg/kg (Table 2). This HMF indicate that honey from our study in fresh condition and acceptable by SNI 216 for the beekeeping honey including from A. cerana and A. mellifera is not exceed 40 mg/kg (National Standardization 217 Agency of Indonesia 2018) and also acceptable by the international standard has been regulated by Codex Alimentarius is 218 not exceed 40 mg/kg for blossom and honeydew honeys (Bogdanov et al. 1999; Thrasyvoulou et al. 2018). The fresh 219 honey after harvested is generally contain the low of HMF is ranging from 0.06 to 0.2 mg/100 g of honey (White 1992). 220 Hydroxymethylfurfural is resulted from the degradation of honey monosaccharide especially fructose and glucose under 221 acid condition and accelerated by the heating. This reaction is producing levulinic and formic acids (Da Silva et al. 2016; 222 White 1992).

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee *A. cerana*

Treatments Diastase enzym		activity Hydroxymethylfurfur	al Acidity (ml NaOH/kg)
Treatments	(DN)	(mg/kg)	
SP0	7.57	5.78	36.33
CP0	5.17	5.04	26.00
SCP0	9.04	4.75	28.60
SP1	6.86	4.77	29.68
CP1	8.51	5.81	28.26
SCP1	6.85	2.24	30.61

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

230 Hydroxymethyfurfural is formed after honey removed from the comb or when the wax covers was opened and the 231 advanced processing like heating process. The increasing of the HMF content is occur in honey with the high acidity and 232 accelerated by the heating process. However, the HMF content also influenced by several factors such as sugars content, 233 organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In addition, HMF is also can be formed at the low temperatures, acidic condition, and sugars dehydration reactions. 234 Therefore, the higher of HMF content is impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). 235 236 Karabournioti and Zervalaki (2001) reported that the heating process increasing the HMF content and decreasing the 237 diastase enzyme activity. The HMF of honey from the A. cerana in our study (Table 2) was differed to previously reported 238 by Wu et al. (2020) for multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana were reported 239 by previously researchers are influenced by the different plant types as the nectar source to produce honey, different sugars 240 241 content, and different geographical origin.

242 Acidity of honey

243 Free acidity is one of an important parameter to evaluate the honey deterioration which is characterized by the organic 244 acids presence in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and phosphates (Da Silva et al. 2016; Moreira et al. 2007). The recent study showed that the honey acidity from A. cerana was 245 246 produced by the sugar palm and coconut saps was ranging from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of A. 247 cerana honey in our study is acceptable by SNI is not exceed 50 ml NaOH/kg for the beekeeping honey including A. 248 cerana and A. mellifera. Furthermore, is also acceptable of the international standard has been regulated by the Codex Alimentarius is not exceed 50 meq/kg for blossom and honeydew honeys (Bogdanov et al. 1999; Thrasyvoulou et al. 249 250 2018)

The sour taste of honey originated from the several of organic and inorganic acids, where the dominant of organic acid present in honey is gluconic acid (Da Silva et al. 2016; White 1992). This organic acid is produced by the enzyme activity of glucose-oxidase which is added by the bees when they are convert a nectar into honey, so can protecting a nectar until honey maturity. This protecting mechanism is occurred by the inhibit of microorganisms activity present in honey (Da Silva et al. 2016; White 1992). This inhibit mechanism includes the combination several factors such as low moisture and presence hydrogen peroxide which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of cell wall resulting in change in cytoplasmic membrane permeability (Molan 1992;
 Nainu et al. 2021; Pasias et al. 2018).

The acidity total content in honey is small quantity, but the present in honey is very important because can influencing 259 260 the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity is indicating the 261 fermentation process had been occurred when some reducing sugar is break down into acetic acid. Ghazali et al. (1994) 262 explained that honey acidity content is related to the yeast number where them is break down some reducing sugar into 263 ethanol and if it's reaction with the oxygen is formed the acetic acid which is increasing the honey acidity. Da Silva et al. 264 (2016) explained that the values higher of acidity may be indicating the fermentation process of sugars into organic acids. 265 The honey acidity is affected by several factors such as different content of organic acids, different geographical origin and 266 the seasonal when honey harvested (Da Silva et al. 2016; Tornuk et al. 2013). The honey acidity from the bee A. cerana in 267 our study (Table 2) was differed to previously studied by Wu et al. (2020) for A. cerana cerana honey is 0.80 mol/kg and 268 Guerzou et al. (2021) is ranging 11 to 47 meq/kg for Algerian honey. Furthermore, is differed to reported by Erwan et al. 269 (2020) that honey acidity from the bee A. mellifera were produced by extrafloral nectar (sugar palm and coconut saps) is 270 ranging from 22.00 to 43.00 ml NaOH/kg. The different acidity has been reported previously with our studied is affected 271 by the different plant types as the nectar source to produce honey, honey pH, geographical origin, and organic acids 272 compound, however in our study has not measured the organic acid compound and honey pH.

273 Honey production potency from the sugar palm and coconut saps

310

274 Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized 275 which can contributing for communities' income. Generally, the main production from the coconut (Cocos nucifera L.) 276 was harvested is coconut fruit to advanced process into coconut oil and copra. Theses commodities have a high price, but 277 if just to producing coconut oil and copra are high risk for the farmers because they are just preparing in the raw material. 278 Therefore, the utilizing of the sap can be produced by the coconut and sugar palm were also potency feed for the bees was 279 used as the nectar source to produce honey. Sugar palm and coconut saps are the feed potential which is studied by Erwan 280 et al. (2021b) that the coconut and sugar palm saps can increasing the number of honey cell and bee bread cell of the bee 281 A. cerana. Furthermore, is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana such as increase the brood cells number, colony weight, and the honey production (Erwan et al. 2022). In addition, the saps 282 from coconut and sugar palm are usually used by the farmers to produce sugar by using a traditional process. 283

284 The coconut plants can produce of 12 stalks in a year and in one of stalk can produce sap of 90 liters, thus, in one coconut plant can produce of 1,080 liters of sap. Furthermore, if the farmers have one hectare of the land which are planted 285 by 100 coconut plants (distance 10 m \times 10 m), so can be produced for about 108,000 liters of coconut sap. To produce 1 286 kg of honey is required coconut sap for about 7 liters and in a year is required 84 liters to produce 12 kg of honey. Thus, 287 288 honey potency in a year from 100 hectares of the land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 289 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big 290 291 potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa 292 Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

Sugar palm plant can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapping not exceed of 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant is ranging from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). Furthermore, if in one hectare of plantation we have 100 sugar palm plants with the distance for planted is 10 m × 10 m, so can be obtained of sap for 115,000 liters.

Based on the field investigation showed that to produce 1 kg of honey from the sugar palm sap is required for about 10 298 liters and in a year is required for about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm 299 300 sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 301 302 tons/month in 100 hectares area. This potency indicate that the sugar palm sap has a big potency to produce honey which is supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap 303 productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 304 tones, 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. It can be concluded that Honey is produced 305 306 by the bee A. cerana from sugar palm and coconut saps as the feed have the quality which is acceptable by Indonesian national standard and international standard has been regulated by the Codex Alimentarius. Honey potency production 307 308 from the coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 128.571 tons/month, while in sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month. 309

ACKNOWLEDGEMENTS

We thank to all beekeepers and farmers which are support and permitting our teams to conduct this study in North
 Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

REFERENCES

Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas Aguss a regissantin, balantin balantin

from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html. Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta

Bul Peternak 42(1): 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294. Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.21059/buletinpeternak.v41i4.13593.

AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C. Bogdanov S. 2009. Harmonised Methods of the International IHC. Bee Prod Sci 1-63.

Bogdanov S. 2009. Hambinstei Methods of the international HIC. Bee Prod Sci 1-05.
Bogdanov S, Lüllmann C, Martin P, von der Ohe W, Russmann H, Vorwohl G, Oddo LP, Sabatini AG, Marcazzan GL, Piro R, Flamini C, Morlot, M., Lhéritier J, Borneck R, Marioleas P, Tsigouri A, Kerkvliet J, Ortiz A, Ivanov T, D'Arcy B, Mossel B, Vit P. 1999. Honey quality and international regulatory standards: Review by the international honey commission. Bee World 80(2): 61-69. https://doi.org/10.1080/0005772x.1999.11099428. regulatory standards: Review by the international honey commission. Bee World 80(2): 61-69. https://doi.org/10.1080/0005772x.1999.11099428. Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323.

https://doi.org/10.1016/j.foodchem.2015.09.051. De La Fuente E, Ruiz-Matute AI, Valencia-Barrera RM, Sanz J, Martínez Castro I. 2011. Carbohydrate composition of Spanish unifloral honeys. Food Chem 129: 1483-1489. https://doi.org/10.1016/j.foodchem.2011.05.121.

Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram.

Erwan E, Harun M, Muhsinin M. 2020. The honey quality of Apis mellifera with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482 Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from

Apis cerana from different regions in North https://doi.org/10.21776/ub.jtapro.2021.022.01.5 Indonesia. J Lombok Regency, Trop Anim Prod 22: 35-41

Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrtd.org/lrtd33/10/33121apist.html.
Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrtd.org/lrtd34/4/3425apis.html.
Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization

phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097. Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic

area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.

Ghazali HM, Ming TC, Hashim DM. 1994. Effect of microwave heating on the storage and properties of starfruit honey. Asean Food J 9: 30-35, Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/https://doi.org/10.3390/resources10100094. burn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI

10.1007/978-3-642-16422-4 3. Determination of sugars in honey by liquid chromatography. Saudi J Biol Sci 18: 17-21.

nal MA, Klein P. 2011. Determin https://doi.org/10.1016/j.sjbs.2010.09.003.

Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to Karabagias IK, Badeka A, Kontakos S, Karabourinon S, Kontoninias Pro. 2014. Characterisation and classification of order place house background in the programmeters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
 Karabourinoti S, Zervalaki P. 2001. The effect of heating on honey HMF and invertase. Apiacta 36: 177-181. Molan PC. 1992. The antibacterial activity of honey. Bee World 73: 59-76.
 Moniruzzaman M, Khali I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis Computer Mathematical Computer Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana*, *Apis Computer Physicochemical 12*, 12

Monituzzanian M, Knaili I, Suiaman SA, Gan SH. 2015. Physicochemical and antoxidant properties of Malaysian noneys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern Med 13: 1-12.
 Moreira RFA, De Maria CAB, Pietroluongo M, Trugo LC. 2007. Chemical changes in the non-volatile fraction of Brazilian honeys during storage under tropical conditions. Food Chem 104: 1236-1241. https://doi.org/10.1016/j.foodchem.2007.01.055.
 Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special

Namu P, Masylta A, Banar MA, Kainan M, Prova SK, Mitta S, Emran TB, Simar-Oandra J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3309/antibiotics10070822. National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta. Pacini E, Nicolson S, 2007. Introduction. In: Nicolson S, Nepi M, Pacini E (Eds.). Nectaries and Nectar. Springer, Netherlands. pp. 1-18. Partap U. 2011. The Pollination Role of Honeybees. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 227-255. DOI 10.1007/978-3-642-16422-4_11.

Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.

quality parameters. Food Chem 242: 515-516. https://doi.org/10.1016/j.tokchem.2017.05.065.
Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogra A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1272. 1272.

1-22. DOI 10.1007/978-3-642-16422-4 1.

Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (Apis cerana javana Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497. nombing DTH. 2005. Ilmu Ternak Lebah Madu. Gadjah Mada University Press, Yogyakarta. sel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical App

Edition. McGraw-Hill Inc., New York Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.

Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.

Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang

Commented [u2]: - This manuscript has outdated

references and lacks of international journal references to be published in Biodiversitas journal. At least, you need to compose a minimum of 20 references which 80% of international scientific journals published in the last 10 years (2012-2022), and maximum 10% references in local language (not English)

-Please, write the references based on the Author's guidelines e-for-author) and include the muio. Digital Object Identifier (DOI) from each of your references.

 $\begin{array}{l} 3145\\ 315\\ 317\\ 318\\ 3221\\ 3223\\ 3225\\ 3227\\ 3223\\ 32323\\ 32325\\ 3227\\ 3227\\ 3225\\ 3227\\ 3227\\ 3227\\ 3227\\ 32323\\ 3233\\ 3233\\ 3233\\ 3233\\ 3233\\ 33333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333\\ 3333$

Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.
White JW. 1992. Honey. In: Graham JM (Ed.). The Hive and the Honey Bee. Dadant & Sons Inc., Hamilton. p. 1324.
Winston M. 1987. The Biology of Honey Bee. Harvard University Press, Cambridge, Massachusetts London.
Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by *Apis cerana cerana*, *Apis dorsata* and *Lepidotrigona flavibasis*. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225.
Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.

SUBMISSION CHECKLIST

Ensure that the following items are present:

- 4	0	1
4	()	

The first corresponding author must be accompanied with contact details:	Give mark (X)
E-mail address	Х
 Full postal address (incl street name and number (location), city, postal code, state/province, country) 	X
Phone and facsimile numbers (incl country phone code)	X
All necessary files have been uploaded, and contain:	
Keywords	X
Running titles	X
All figure captions	Х
All tables (incl title and note/description)	Х
Further considerations	
 Manuscript has been "spell & grammar-checked" Better, if it is revised by a professional science editor or a native English speaker 	X
References are in the correct format for this journal	Х
 All references mentioned in the Reference list are cited in the text, and vice versa 	Х
 Colored figures are only used if the information in the text may be losing without those images 	X
 Charts (graphs and diagrams) are drawn in black and white images; use shading to differentiate 	X

COVERING LETTER

Dear Editor-in-Chief,

I herewith enclosed a research article,

Title:

Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps

Author(s) name:

Erwan and Agussalim

Address

(Fill in your institution's name and address, your personal cellular phone and email) Faculty of Animal Science, University of Mataram, Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp.: +62370-633603. Email: apiserwan@gmail.com

For possibility publication on the journal:

(fill in *Biodiversitas* or *Nusantara Bioscience* or *mention the others*) Biodiversitas

Novelty:

(state your claimed novelty of the findings versus current knowledge)

The novelty of our study was the honey quality produced by the bee *Apis cerana* and the honey potency which are produced by sugar palm and coconut saps which have not studied by another researcher especially in Indonesia. Therefore, this manuscript is very informative for the beekeepers, researchers or scientist, and honey consumers.

Statements:

This manuscript has not been published and is not under consideration for publication to any other journal or any other type of publication (including web hosting) either by me or any of my co-authors. Author(s) has been read and agree to the Ethical Guidelines.

List of five potential reviewers

(Fill in names of five potential reviewers and their **email** addresses. He/she should have Scopus ID and come from different institution with the authors; and from at least three different countries)

- 1. Dr. Jati Batoro (Department of Biology, Faculty of Mathematic and Natural Sciences, Brawijaya University); Email: jati_batoro@yahoo.co.id; Scopud ID: 57204421874
- 2. Dr. Dewi Masyithoh, S.P., M.Pt. (Faculty of Agriculture, Islamic University of Malang, Indonesia), Email: masyithoh.dewi@unisma.ac.id, Scopus ID: 57217108400
- 3. Firman Jaya, S.Pt., MP. (Department of Animal Products Technology, Faculty of Animal Science, Brawijaya University, Indonesia), Email: <u>firmanjaya@ub.ac.id</u>, Scopus ID: 36800743500

Place and date:

Mataram, 6th September 2022

Sincerely yours,

(fill in your name, no need scanned autograph) Dr. Ir. Erwan, M.Si.

7

20

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,•}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp/Fax: +62370-633603/+62370-640592. *email: apiserwan@gmail.com

²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta – 55281, Indonesia

8 Abstract. One of the big problems when keeping of honeybees is the limited of sustainable feed, especially in the rain season. The 9 objectives of this study were to evaluate the honey quality from the bee A. cerana based on the chemical composition, honey potency 10 produced by the coconut and sugar palm saps. This study using thirty colonies of the bee A. cerana were divided into six treatments 11 consists of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut 12 13 sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the A. cerana were 14 moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and 15 16 sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be concluded that 17 honey quality is produced by sugar palm and coconut saps, and potential as the bee feed.

18 Key words: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

19 **Running title:** Honey quality of *Apis cerana* produced by sugar palm and coconut saps

INTRODUCTION

21 Honeybee of A. cerana is one of the bees from the Apis genus which is include the local bee which is spread in some 22 regions in Indonesia are Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 23 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by the beekeepers 24 using a traditional hives (for example using a coconut log hive) and semi modern hive (box hive without nest frame) to produce honey. Furthermore, several regions have been practices the beekeeping of the bee A. cerana has been reported by 25 Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok. 26 27 However, the beekeeping of A. cerana is mostly using traditional hives although using a box hives because is not 28 completed by the honey frame like a beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal 29 jelly, and propolis, however their production is lower compared to the bee A. mellifera.

30 One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to 31 produce honey, bee bread, and royal jelly. The limitation feed is the very serious problem have been faced by the 32 beekeepers because they have not area which is used to planted several plants which are used the feed source to produce the honeybees products. Honeybees feeds is divided into two types namely nectar and pollen, where nectar is obtained by 33 34 the foragers from the plant flowers (nectar floral) and nectar extrafloral which is obtained by the foragers from stalk and 35 leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by using all body part and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting 36 37 nectar and pollen from the plant flowers, the foragers is role as the pollinator agent by transporting pollen from the anther 38 to pistil so that the pollination process occurs. This process is continuously done by the foragers until their honey stomach 39 is full by a nectar and their corbicula has been deposited by the pollen. This pollination which is impacts on the increasing 40 the plants productivity (Pohorecka et al., 2014; Supeno et al., 2021).

One of the strategies to produce the sustainability honey from the bee *A. cerana* by using a sap from the plants such as sugar palm and coconut. Several studies have been conducted by using a sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed can enhancing the production of honey cells and bee bread cells. However, the use each of sap from coconut and sugar palm can increasing the honey and bee bread cells compared to control group without sap as the feed (multifloral nectar). Furthermore, Erwan et al. (2022) was also reported that the use of sugar palm and coconut saps which each added by sugar 47 palm pollen can improving the bee A. cerana productivity such as increase the honey production, brood cells number, and colony weight. In addition, in other study showed that the use of extrafloral nectar namely sugar palm (Arenga pinnata) 48 and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed which is resulting the honey chemical composition 49 (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national 50 standard and international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, the studied 51 about the chemical composition of honey from the bee A. cerana which are produced from the sugar palm sap, coconut sap 52 53 and their honey potency production from both sap sugar palm and coconut have not been studied. Therefore, the objectives 54 of this study were to evaluate the honey quality based on the chemical composition from the bee A. cerana, honey potency produced by the coconut and sugar palm saps. 55

56

MATERIALS AND METHODS

57 Study area

58 This research has been conducted in the North Duman Village (8°32'10"S 116°09'32"E), Lingsar Sub-district, West 59 Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty of A. cerana colonies were divided into six treatments and each five colonies per treatment as the replication. The saps were used in our study were obtained 60 61 from coconut (Cocos nucifera L.) and sugar palm (Arenga pinnata). The treatments in our study were sugar palm sap 62 without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + 63 sugar palm sap of 50% without added by sugar palm pollen (SCPO); sugar palm sap was added by sugar palm pollen 64 (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by 65 sugar palm pollen (SCP1).

The technique was used to given sugar palm and coconut saps and sugar palm pollen was according to previously method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo were completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo were placed one meter of the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place colony to avoid the foragers to collect pollen and sap from the other treatments.

72 Proceduress

73 Honey quality

74 Honey from the A. cerana was harvested after beekeeping for three months by using a coconut and sugar palm saps. 75 Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the A. cerana were evaluated based on the chemical composition consists of 76 77 moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from Association of Official Agricultural 78 79 Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed by using a Layne-Enyon method and sucrose content was 80 analyzed by a Luff Schoorl method were described by AOAC (2005). Diastase enzyme activity, hydroxymethylfurfural 81 (HMF), and free acidity were analyzed based on the harmonised methods of the international honey commission (Machado 82 et al. 2022).

83 Honey production from sugar palm and coconut saps

Sugar palm and coconut saps each ten liters were used to measuring the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed in the plastic plate in front of the box hives at the distance of one meter. In addition, the honey production without using of sugar palm and coconut saps were measured for one year of the beekeeping which is used to calculate the contribution of sugar palm and coconut saps in honey production.

89 *Production of saps from coconut and sugar palm*

The production of sap from coconut was measured for a year, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare which was calculated from the sap production per hectare multiplied by the tress number in one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap and then honey production was measured by cylinder glass

96 Data analysis

The data of honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using a descriptive analysis (Steel et al. 1997).

RESULTS AND DISCUSSION

100 Moisture content of honey

101 Honey is composed by water as the second largest of honey constituent and its ranging from 15 to 21 g/100 g, 102 depending on the plant types as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is 103 also affected by honey maturity level, processing postharvest, and storage condition (Da Silva et al. 2016). The honey 104 moisture is affecting the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the 105 106 temperature and humidity or depending on the season (rain and dry seasons) and honey moisture can increase during the 107 postharvest processing such as storage condition because honey is hygroscopic that can absorbs the moisture in the air (Da 108 Silva et al. 2016; Karabagias et al. 2014).

The recent study showed that the honey moisture from the bee A. cerana which was produced by sugar palm and 109 coconut saps and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted 110 by Indonesian national standard (SNI) where the moisture for beekeeping honey including the bee A. cerana and A. 111 mellifera is not exceed 22% (National Standardization Agency of Indonesia 2018) and higher compared to international 112 113 standard which is regulated by Codex Alimentarius is not exceed 20% (Thrasyvoulou et al. 2018). The variation of honey moisture of the bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm 114 and coconut, however in our study has not measured. The higher moisture content is requiring the long time to ripening of 115 honey and process decreasing of honey moisture have been started by the bees when they are taken a nectar from plant 116 flowers or saps as the raw material to produce honey. Furthermore, small portion of moisture content has been evaporated 117 in the honey sack before transferred to the other bee which is working in the hive. This transfer is rapid depending on the 118 119 temperature, colony strength, and nectar availability (Da Silva et al. 2016).

120 121

99

Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee A. cerana

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

127 Honey production process is started from the foragers collecting a nectar from the plant flowers or extrafloral nectar 128 and then stored in honey stomach. After that, the foragers will be transferring a nectar has been collected to the other bees whom working to processing a nectar into honey in their mouth, then put in honey stomach and then is transferred to other 129 bees for several times until honey is ripening. A considerable of water amount will be evaporated in this process and this 130 continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes (Balasubramanyam 131 2021; Zhang et al. 2021). The honey moisture content in our study was differed to reported by Wang et al. (2021) that 132 honey moisture from the bee A. cerana which is collected from 42 different honeycombs from China is ranging from 17.03 133 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from 134 135 Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) was also reported that the honey moisture was produced by the A. mellifera bee by using a sugar palm and coconut saps is ranging from 19.34 to 20.94%. 136 The different honey moisture content has been reported are affected by the different geographical origins which is impact 137 138 on the different plant types can be growth each region, different environmental condition (temperature and humidity), and 139 also different bee species which is impact on the different ability to evaporate water in the honey.

140 **Reducing sugar and sucrose contents of honey**

Sugars in honey are composed by monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

The recent study showed that the honey s reducing sugar from the bee *A. cerana* were beekeeping by using a sugar palm and coconut saps and their combination as the nectar source to produce honey is ranging from 62.78 to 68.37 % (Table 1). This honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1, but not acceptable for treatments SCP0, SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into simple sugars. It is known that this enzyme is responsible for the conversion of sucrose into glucose and fructose. These 151 sugars are included in reducing sugar group and as the main component present in honey. In honey maturity process, the 152 sucrose is break down by the invertase enzyme into simple sugars simultaneously and water will be evaporated so that it will be increasing the reducing sugar content. In addition, enzymes secreted by the worker bees are also can break down 153 the carbohydrate into simple sugars. Furthermore, other enzyme present in honey is diastase enzyme that role to break 154 down starch into simple sugars (Da Silva et al. 2016). The honey reducing sugar in our study (Table 1) was differed to 155 156 reported by Erwan et al. (2020) that honey reducing sugar from the bee A. mellifera which was produced by extrafloral 157 nectar (sugar palm and coconut saps) is ranging from 60.15 to 73.69%. The different reducing sugar may be affected by 158 the different bee species which is impact on the different their ability to evaporate water present in honey especially when they are convert the complex sugars into simple sugars and different season when done the study which are related to 159 160 temperature and humidity environmental.

161 The honey sucrose content from the bee A. cerana in our study is ranging from 1.44 to 3.42% (Table 1) and acceptable 162 by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 163 5% for blossom and honeydew honeys (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study is 164 originated from sugar palm and coconut saps. The low of honey sucrose content in our study is caused the honey which is 165 harvested in mature condition that characterized by honey cells have been covered by the wax. Furthermore, the invertase 166 167 enzyme which is produced by the worker bees is actively break down of sucrose from saps into simple sugars. There are two types of invertase enzymes which are produced by the worker bees, namely glucoinvertase which is converts sucrose 168 into glucose and fructoinvertase which is converts sucrose into fructose. These enzymes are mostly derived from the bee's 169 170 secretion and only a small portion from the nectar, while the honeydew from the insect's secretion is mostly contain 171 invertase enzyme (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) was differed to reported by 172 Erwan et al. (2020) that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 4.21 to 4.40%%. 173

174 The honey sucrose content is a very important parameter to evaluate the maturity of honey to identifying manipulation, 175 where the high levels may be indicated adulterations by adding the several sweeteners such cane sugar or refined beet 176 sugar. In addition, also indicating the early of harvest, where sucrose is not completed transformed into fructose and 177 glucose, the bees feeding artificial in prolonged time by using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; 178 Escuredo et al. 2013; Tornuk et al. 2013). Honey is sugar solution that is supersaturated and unstable so it's easy to crystallize. The honey crystallization is affected by concentration of glucose, fructose, and water. Fructose is the dominant 179 180 sugar present in honey from A. mellifera was produced by several plants as the nectar source which is used by workers to 181 produce honey such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey was produced by Brassica napus. Rape honey is higher in glucose and lower in fructose which is impact on the rapidly 182 crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which 183 is impact on the different plant types can growth in each region and impact on the different sugars content from the nectar 184 which is produced by the nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; 185 Escuredo et al. 2014; Tornuk et al. 2013). Furthermore, sugars content in honey is influenced by climate (season, 186 187 temperature, and humidity), processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; 188 Tornuk et al. 2013).

189 Diastase enzyme activity and hydroxymethylfurfural of honey

190 The recent study showed that the diastase enzyme activity from the bee A. cerana honey was produced by the sugar palm and coconut saps was ranging from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with the 191 minimum of 3 DN for the beekeeping honey including the bee A. cerana and A. mellifera (National Standardization 192 193 Agency of Indonesia 2018) and also acceptable by international standard has been regulated by Codex Alimentarius with 194 the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is contain enzymes which is originate 195 from the bees, pollen, and nectar from plant flowers, but the mostly enzymes are added by the bees when they are convert 196 nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 197 2) was differed to reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was 198 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

Diastases is divided into α- and β-amylases which are the natural enzymes present in honey. The α-amylase is separate the starch chain randomly in the central to produce dextrin, while the β-amylase to separate the maltose in the end chain. Diastase enzyme content in honey is influenced by nectar source (floral and extrafloral nectars) to produce honey and honey geographical origins which are impact on the different chemical composition of the nectar can be produced by the plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species is also influencing the activity diastase because it's related to the distance and the flowers plant numbers can be visited by the foragers when they are collecting nectar and pollen were using to produce honey and bee bread (Da Silva et al. 2016).

Generally, diastase enzyme is role to break down the complex sugars into simple sugars. This enzyme is role to digest of starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or thermolabile. Thus, this condition can be used to evaluate of overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, the diastase activity is also used to evaluate honey age which is related to storage time and the temperature because the diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and Sultanoğlu 2013). The honey diastase activity from the bee *A. cerana* in our study (Table 2) was differed to reported by Wu et al. (2020) for multifloral honey produced by the *A. cerana cerana* from Hainan province (China) was 6.70 Göthe. Furthermore, also was differed to reported by Wang et al. (2021) that the diastase activity of *A. cerana* honey from Qinling Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activity of honey from *A. cerana* were reported by previously researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and different geographical origin.

217 Furthermore, the HMF of A. cerana honey was produced by the sugar palm and coconut saps in our study was ranging from 2.24 to 5.81 mg/kg (Table 2). This HMF indicate that honey from our study in fresh condition and acceptable by SNI 218 219 for the beekeeping honey including from A. cerana and A. mellifera is not exceed 40 mg/kg (National Standardization 220 Agency of Indonesia 2018) and also acceptable by the international standard has been regulated by Codex Alimentarius is 221 not exceed 40 mg/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018). The fresh honey after harvested is 222 generally contain the low of HMF is ranging from 0 to 4.12 mg/kg honey. Hydroxymethylfurfural is resulted from the 223 degradation of honey monosaccharide especially fructose and glucose under acid condition and accelerated by the heating. 224 This reaction is producing levulinic and formic acids (Da Silva et al. 2016).

225 226

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana

Treatments	Diastase enzyme	activity Hydroxymethylfurfural	Acidity (ml NaOH/kg)
Treatments	(DN)	(mg/kg)	
SP0	7.57	5.78	36.33
CP0	5.17	5.04	26.00
SCP0	9.04	4.75	28.60
SP1	6.86	4.77	29.68
CP1	8.51	5.81	28.26
SCP1	6.85	2.24	30.61

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0);
coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm
pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

Hydroxymethyfurfural is formed after honey removed from the comb or when the wax covers was opened and the 232 advanced processing like heating process. The increasing of the HMF content is occur in honey with the high acidity and 233 accelerated by the heating process. However, the HMF content also influenced by several factors such as sugars content, 234 235 organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In addition, HMF is also can be formed at the low temperatures, acidic condition, and sugars dehydration reactions. 236 Therefore, the higher of HMF content is impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The 237 238 HMF of honey from the A. cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for 239 multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling 240 Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana were reported by previously 241 researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and different geographical origin. 242

243 Acidity of honey

Free acidity is one of an important parameter to evaluate the honey deterioration which is characterized by the organic acids presence in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and phosphates (Da Silva et al. 2016). The recent study showed that the honey acidity from *A. cerana* was produced by the sugar palm and coconut saps was ranging from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of *A. cerana* honey in our study is acceptable by SNI is not exceed 50 ml NaOH/kg for the beekeeping honey including *A. cerana* and *A. mellifera*. Furthermore, is also acceptable of the international standard has been regulated by the Codex Alimentarius is not exceed 50 meq/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

The sour taste of honey originated from the several of organic and inorganic acids, where the dominant of organic acid present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase which is added by the bees when they are convert a nectar into honey, so can protecting a nectar until honey maturity. This protecting mechanism is occurred by the inhibit of microorganisms activity present in honey (Da Silva et al. 2016). This inhibit mechanism includes the combination several factors such as low moisture and presence hydrogen peroxide which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of cell wall resulting in change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 2018).

The acidity total content in honey is small quantity, but the present in honey is very important because can influencing the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity is indicating the fermentation process had been occurred when some reducing sugar is break down into acetic acid. Honey acidity content is related to the yeast number where them is break down some reducing sugar into ethanol and if it's reaction with the oxygen is formed the acetic acid which is increasing the honey acidity. The values higher of acidity may be indicating the 263 fermentation process of sugars into organic acids. The honey acidity is affected by several factors such as different content 264 of organic acids, different geographical origin and the seasonal when honey harvested (Da Silva et al. 2016; Tornuk et al. 2013). The honey acidity from the bee A. cerana in our study (Table 2) was differed to previously studied by Wu et al. 265 (2020) for A. cerana cerana honey is 0.80 mol/kg and Guerzou et al. (2021) is ranging 11 to 47 meq/kg for Algerian 266 honey. Furthermore, is differed to reported by Erwan et al. (2020) that honey acidity from the bee A. mellifera were 267 268 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 22.00 to 43.00 ml NaOH/kg. The different 269 acidity has been reported previously with our studied is affected by the different plant types as the nectar source to produce 270 honey, honey pH, geographical origin, and organic acids compound, however in our study has not measured the organic acid compound and honey pH. 271

272 Honey production potency from the sugar palm and coconut saps

273 Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized 274 which can contributing for communities' income. Generally, the main production from the coconut (Cocos nucifera L.) was harvested is coconut fruit to advanced process into coconut oil and copra. Theses commodities have a high price, but 275 276 if just to producing coconut oil and copra are high risk for the farmers because they are just preparing in the raw material. 277 Therefore, the utilizing of the sap can be produced by the coconut and sugar palm were also potency feed for the bees was 278 used as the nectar source to produce honey. Sugar palm and coconut saps are the feed potential which is studied by Erwan 279 et al. (2021b) that the coconut and sugar palm saps can increasing the number of honey cell and bee bread cell of the bee 280 A. cerana. Furthermore, is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana such as increase the brood cells number, colony weight, and the honey production (Erwan et al. 2022). In addition, the saps 281 from coconut and sugar palm are usually used by the farmers to produce sugar by using a traditional process. 282

The coconut plants can produce of 12 stalks in a year and in one of stalk can produce sap of 90 liters, thus, in one 283 284 coconut plant can produce of 1,080 liters of sap. Furthermore, if the farmers have one hectare of the land which are planted 285 by 100 coconut plants (distance 10 m \times 10 m), so can be produced for about 108,000 liters of coconut sap. To produce 1 286 kg of honey is required coconut sap for about 7 liters and in a year is required 84 liters to produce 12 kg of honey. Thus, 287 honey potency in a year from 100 hectares of the land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542,857 tons/year) or equivalent with 288 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big 289 290 potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa 291 Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

Sugar palm plant can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapping not exceed of 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant is ranging from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). Furthermore, if in one hectare of plantation we have 100 sugar palm plants with the distance for planted is $10 \text{ m} \times 10 \text{ m}$, so can be obtained of sap for 115,000 liters.

297 Based on the field investigation showed that to produce 1 kg of honey from the sugar palm sap is required for about 10 298 liters and in a year is required for about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm 299 sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and 300 multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 301 tons/month in 100 hectares area. This potency indicate that the sugar palm sap has a big potency to produce honey which is 302 supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 303 tones, 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. It can be concluded that Honey is produced 304 305 by the bee A. cerana from sugar palm and coconut saps as the feed have the quality which is acceptable by Indonesian 306 national standard and international standard has been regulated by the Codex Alimentarius. Honey potency production 307 from the coconut sap in 100 hectares area can produce honey of 1.542.857 tons/year or equivalent with 128.571 308 tons/month, while in sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

309

ACKNOWLEDGEMENTS

REFERENCES

We thank to all beekeepers and farmers which are support and permitting our teams to conduct this study in North Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

312

313 Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee *Tetragonula laeviceps (Hymenoptera: Meliponinae)*. Biodiversitas

22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.
 Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, *Tetragonula laeviceps*,

from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html.

- 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
- Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bul Peternak 42(1): 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294.
- Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.21059/buletinpeternak.v41i4.13593.
- AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.
- Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.
- Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
- Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram.
- Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis mellifera* with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482.
- Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from from different North Regency, Trop Prod 22. 35-41 Apis cerana regions Lombok Indonesia. J Anim in https://doi.org/10.21776/ub.jtapro.2021.022.01.5
- Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
- Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.
- Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097.
- Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
- Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/10.3390/resources10100094.
- Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI 10.1007/978-3-642-16422-4_3.
- Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
- Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.
- Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. BMC Complement Altern Med 13: 1-12.
- Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822.
- National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.
- Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.
- Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
- Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
- Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.
- Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (*Apis cerana javana* Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.
- Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
- Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (*Coffea robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062.
- Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.
- Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
- Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
- Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.
- Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by *Apis cerana cerana*, *Apis dorsata* and *Lepidotrigona flavibasis*. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225.
- Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.
- Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

387

388

386

389 Ensure that the following items are present:

2	n	Λ	
э	Э	υ	

The first corresponding author must be accompanied with contact details: Give mark (X) • E-mail address X • Full postal address (incl street name and number (location), city, postal code, state/province, country) X • Phone and facsimile numbers (incl country phone code) X

All necessary files have been uploaded, and contain:

Keywords	Χ
Running titles	X
All figure captions	X
All tables (incl title and note/description)	X

Further considerations

• Manuscript has been "spell & grammar-checked" Better, if it is revised by a professional	Χ
science editor or a native English speaker	
References are in the correct format for this journal	Χ
All references mentioned in the Reference list are cited in the text, and vice versa	X
• Colored figures are only used if the information in the text may be losing without those images	X
 Charts (graphs and diagrams) are drawn in black and white images; use shading to differentiate 	X

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

8 9 Abstract. One of the big problems when keeping of honeybees is the limited of sustainable feed, especially in the rain season. The objectives of this study were to evaluate the honey quality from the bee *A. cerana* based on the chemical composition, honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee *A. cerana* were divided into six treatments 10 11 consists of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 12 13 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the *A. cerana* were 14 moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), 15 hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be concluded that 16 17 honey quality is produced by sugar palm and coconut saps, and potential as the bee feed.

18 Keywords: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

19 Running title: Honey quality of Apis cerana produced by sugar palm and coconut saps

20

INTRODUCTION

Honeybee of *A. cerana* is one of the bees from the *Apis* genus which is include the local bee which is spread in some regions in Indonesia are Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee *A. cerana* has been practiced by the beekeepers using a traditional hives (for example using a coconut log hive) and semi modern hive (box hive without nest frame) to produce honey. Furthermore, several regions have been practices the beekeeping of the bee *A. cerana* has been reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok. However, the beekeeping of *A. cerana* is mostly using traditional hives although using a box hives because is not completed by the honey frame like a beekeeping of *A. mellifera*. The bee *A. cerana* can produce honey, bee bread, royal jelly, and propolis, however their production is lower compared to the bee *A. mellifera*.

One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to 31 32 produce honey, bee bread, and royal jelly. The limitation feed is the very serious problem have been faced by the beekeepers because they have not area which is used to planted several plants which are used the feed source to produce 33 34 the honeybees products. Honeybees feeds is divided into two types namely nectar and pollen, where nectar is obtained by the foragers from the plant flowers (nectar floral) and nectar extrafloral which is obtained by the foragers from stalk and 35 36 leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by using all body part and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting 37 nectar and pollen from the plant flowers, the foragers is role as the pollinator agent by transporting pollen from the anther 38 to pistil so that the pollination process occurs. This process is continuously done by the foragers until their honey stomach 39 40 is full by a nectar and their corbicula has been deposited by the pollen. This pollination which is impacts on the increasing the plants productivity (Pohorecka et al., 2014; Supeno et al., 2021).

One of the strategies to produce the sustainability honey from the bee *A. cerana* by using a sap from the plants such as sugar palm and coconut. Several studies have been conducted by using a sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed can enhancing the production of honey cells and bee bread cells. However, the use each of sap from coconut and sugar palm can increasing the honey and bee bread cells compared to control group without sap as the feed (multifloral nectar). Furthermore, Erwan et al. (2022) was also reported that the use of sugar palm and coconut saps which each added by sugar palm pollen can improving the bee *A. cerana* productivity such as increase the honey production, brood cells number, and **Commented [11]:** Maybe better the conclusion can be replaced by:

It can be concluded that the quality of *A. cerana* honey which are produced by the sugar palm and coconut saps are acceptable by the Indonesia national standard and international standard. The sugar palm and coconut saps have a big potential as the bee feed especially for the bee *A. cerana*.

1	Commented [12]: deleted
1	Commented [I3]: Should be practicing
1	Commented [14]: Should be or use box hives, but
1	Commented [I5]: deleted
1	Commented [l6]: Should be of feed
1	Commented [17]: Should be that has
1	Commented [18]: Should be no
-	Commented [19]: Should be plant
1	Commented [110]: Should be as the
1	Commented [111]: Should be parts
1	Commented [I12]: deleted
1	Commented [113]: Should be of
-	Commented [I14]: deleted
1	Commented [115]: Should be enhance
1	Commented [116]: deleted
1	Commented [117]: Should be increase
1	Commented [118]: Should be which are each added
-	Commented [119]: Should be improve

1

48 colony weight. In addition, in other study showed that the use of extrafloral nectar namely sugar palm (*Arenga pinnata*) 49 and coconut (*Cocos nucifera* L.) saps as the *A. mellifera* bee feed which is resulting the honey chemical composition 49 (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national 49 standard and international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, the studied 49 about the chemical composition of honey from the bee *A. cerana* which are produced from the sugar palm sap, coconut sap 49 and their honey potency production from both sap sugar palm and coconut have not been studied. Therefore, the objectives 40 of this study were to evaluate the honey quality based on the chemical composition from the be *A. cerana*, honey potency

55 produced by the coconut and sugar palm saps.

56

MATERIALS AND METHODS

57 Study area

This research has been conducted in the North Duman Village (8°32'10"S 116°09'32"E), Lingsar Sub-district, West 58 59 Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty of A. cerana colonies were divided 60 into six treatments and each five colonies per treatment as the replication. The saps were used in our study were obtained 61 from coconut (Cocos nucifera L.) and sugar palm (Arenga pinnata). The treatments in our study were sugar palm sap 62 without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + 63 sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen 64 (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by 65 sugar palm pollen (SCP1).

The technique was used to given sugar palm and coconut saps and sugar palm pollen was according to previously method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo were completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo were placed one meter of the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place colony to avoid the foragers to collect pollen and sap from the other treatments.

72 Proceduress

73 Honey quality

74 Honey from the A. cerana was harvested after beekeeping for three months by using a coconut and sugar palm saps. 75 Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their 76 chemical composition. Honey quality from the A. cerana were evaluated based on the chemical composition consists of 77 78 moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from Association of Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed by using a Layne-Enyon method and sucrose content was 79 80 analyzed by a Luff Schoorl method were described by AOAC (2005). Diastase enzyme activity, hydroxymethylfurfural 81 (HMF), and free acidity were analyzed based on the harmonised methods of the international honey commission (Machado et al. 2022). 82

83 Honey production from sugar palm and coconut saps

Sugar palm and coconut saps each ten liters were used to measuring the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed in the plastic plate in front of the box hives at the distance of one meter. In addition, the honey production without using of sugar palm and coconut saps were measured for one year of the beekeeping which is used to calculate the contribution of sugar palm and coconut saps in honey production.

89 Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare which was calculated from the sap production per hectare multiplied by the tress number in one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap and then honey production was measured by cylinder glass

96 Data analysis

The data of honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using a descriptive analysis (Steel et al. 1997).

Commented [120]: Should be studies

Commented [l21]: Please add the picture of both saps sugar palm and coconut, sugar palm pollen, and honey from *A. cerana*

Please add briefly the method used to harvest and obtained the sugar palm and coconut saps

Commented [I22]: Maybe better please add the picture when given the sugar palm and coconut saps, and sugar palm pollen to the bees according to previously study by Erwan et al. (2022, 2021b)

Commented [123]: Please add briefly the method is used to harvest of honey

Commented [124]: Maybe per tree ?
Commented [125]: Should be trees number

RESULTS AND DISCUSSION

100 Moisture content of honey

101 Honey is composed by water as the second largest of honey constituent and its ranging from 15 to 21 g/100 g, 102 depending on the plant types as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is 103 also affected by honey maturity level, processing postharvest, and storage condition (Da Silva et al. 2016). The honey 104 moisture is affecting the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific 105 gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the 106 temperature and humidity or depending on the season (rain and dry seasons) and honey moisture can increase during the 107 postharvest processing such as storage condition because honey is hygroscopic that can absorbs the moisture in the air (Da 108 Silva et al. 2016; Karabagias et al. 2014).

109 The recent study showed that the honey moisture from the bee A. cerana which was produced by sugar palm and 110 coconut saps and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted by Indonesian national standard (SNI) where the moisture for beekeeping honey including the bee A. cerana and A. 111 mellifera is not exceed 22% (National Standardization Agency of Indonesia 2018) and higher compared to international 112 standard which is regulated by Codex Alimentarius is not exceed 20% (Thrasyvoulou et al. 2018). The variation of honey 113 114 moisture of the bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm and coconut, however in our study has not measured. The higher moisture content is requiring the long time to ripening of 115 honey and process decreasing of honey moisture have been started by the bees when they are taken a nectar from plant 116 flowers or saps as the raw material to produce honey. Furthermore, small portion of moisture content has been evaporated 117 118 in the honey sack before transferred to the other bee which is working in the hive. This transfer is rapid depending on the temperature, colony strength, and nectar availability (Da Silva et al. 2016). 119

120 121 Table 1 The moisture reducing sugar and sucross contents of honey from the bas A age

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

Honey production process is started from the foragers collecting a nectar from the plant flowers or extrafloral nectar 127 128 and then stored in honey stomach. After that, the foragers will be transferring a nectar has been collected to the other bees 129 whom working to processing a nectar into honey in their mouth, then put in honey stomach and then is transferred to other 130 bees for several times until honey is ripening. A considerable of water amount will be evaporated in this process and this continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes (Balasubramanyam 131 2021; Zhang et al. 2021). The honey moisture content in our study was differed to reported by Wang et al. (2021) that 132 133 honey moisture from the bee A. cerana which is collected from 42 different honeycombs from China is ranging from 17.03 134 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) was also reported that the honey 135 136 moisture was produced by the A. mellifera bee by using a sugar palm and coconut saps is ranging from 19.34 to 20.94%. 137 The different honey moisture content has been reported are affected by the different geographical origins which is impact 138 on the different plant types can be growth each region, different environmental condition (temperature and humidity), and 139 also different bee species which is impact on the different ability to evaporate water in the honey.

140 Reducing sugar and sucrose contents of honey

Sugars in honey are composed by monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).
 The recent study showed that the honey s reducing sugar from the bee *A. cerana* were beekeeping by using a sugar

an and cocont says and their combination as the nectar source to produce honey is ranging from 62.78 to 68.37 %
 (Table 1). This honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1, but not acceptable
 for treatments SCP0, SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of

149 Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into 150 simple sugars. It is known that this enzyme is responsible for the conversion of sucrose into glucose and fructose. These **Commented [126]:** The results and discussion is very great and comprehensive, but any minor corrections

Commented [127]: Should be constituents

-	Commented [I33]: Should be in the honey
	Commented [I34]: Should be nectar that has
	Commented [135]: Should be who are
$\langle \rangle$	Commented [136]: Should be process
	Commented [137]: Should be amount of water
	Commented [I38]: deleted
	Commented [I39]: deleted
	Commented [I40]: deleted

Commented [141]: deleted

151 sugars are included in reducing sugar group and as the main component present in honey. In honey maturity process, the 152 sucrose is break down by the invertase enzyme into simple sugars simultaneously and water will be evaporated so that it 153 will be increasing the reducing sugar content. In addition, enzymes secreted by the worker bees are also can break down 154 the carbohydrate into simple sugars. Furthermore, other enzyme present in honey is diastase enzyme that role to break 155 down starch into simple sugars (Da Silva et al. 2016). The honey reducing sugar in our study (Table 1) was differed to 156 reported by Erwan et al. (2020) that honey reducing sugar from the bee A. mellifera which was produced by extrafloral 157 nectar (sugar palm and coconut saps) is ranging from 60.15 to 73.69%. The different reducing sugar may be affected by 158 the different bee species which is impact on the different their ability to evaporate water present in honey especially when 159 they are convert the complex sugars into simple sugars and different season when done the study which are related to 160 temperature and humidity environmental.

161 The honey sucrose content from the bee A. cerana in our study is ranging from 1.44 to 3.42% (Table 1) and acceptable 162 by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency 163 of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 164 5% for blossom and honeydew honeys (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study is 165 originated from sugar palm and coconut saps. The low of honey sucrose content in our study is caused the honey which is 166 harvested in mature condition that characterized by honey cells have been covered by the wax. Furthermore, the invertase 167 enzyme which is produced by the worker bees is actively break down of sucrose from saps into simple sugars. There are 168 two types of invertase enzymes which are produced by the worker bees, namely glucoinvertase which is converts sucrose 169 into glucose and fructoinvertase which is converts sucrose into fructose. These enzymes are mostly derived from the bee's 170 secretion and only a small portion from the nectar, while the honeydew from the insect's secretion is mostly contain 171 invertase enzyme (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) was differed to reported by 172 Erwan et al. (2020) that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm 173 and coconut saps) is ranging from 4.21 to 4.40%%.

The honey sucrose content is a very important parameter to evaluate the maturity of honey to identifying manipulation, 174 175 where the high levels may be indicated adulterations by adding the several sweeteners such cane sugar or refined beet 176 sugar. In addition, also indicating the early of harvest, where sucrose is not completed transformed into fructose and 177 glucose, the bees feeding artificial in prolonged time by using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; 178 Escuredo et al. 2013; Tornuk et al. 2013). Honey is sugar solution that is supersaturated and unstable so it's easy to 179 crystallize. The honey crystallization is affected by concentration of glucose, fructose, and water. Fructose is the dominant 180 sugar present in honey from A. mellifera was produced by several plants as the nectar source which is used by workers to 181 produce honey such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey 182 was produced by Brassica napus. Rape honey is higher in glucose and lower in fructose which is impact on the rapidly 183 crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which 184 is impact on the different plant types can growth in each region and impact on the different sugars content from the nectar 185 which is produced by the nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; 186 Escuredo et al. 2014; Tornuk et al. 2013). Furthermore, sugars content in honey is influenced by climate (season, temperature, and humidity), processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; 187 188 Tornuk et al. 2013).

189 Diastase enzyme activity and hydroxymethylfurfural of honey

190 The recent study showed that the diastase enzyme activity from the bee A. cerana honey was produced by the sugar palm and coconut saps was ranging from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with the 191 192 minimum of 3 DN for the beekeeping honey including the bee A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also acceptable by international standard has been regulated by Codex Alimentarius with 193 194 the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is contain enzymes which is originate 195 from the bees, pollen, and nectar from plant flowers, but the mostly enzymes are added by the bees when they are convert 196 nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 2) was differed to reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was 197 198 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

199 Diastases is divided into α - and β -amylases which are the natural enzymes present in honey. The α -amylase is separate the starch chain randomly in the central to produce dextrin, while the β -amylase is separate the maltose in the end chain. Diastase enzyme content in honey is influenced by nectar source (floral and extrafloral nectars) to produce honey and honey geographical origins which are impact on the different chemical composition of the nectar can be produced by the plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species is also influencing the activity diastase because it's related to the distance and the flowers plant numbers can be visited by the foragers when they are collecting nectar and pollen were using to produce honey and bee bread (Da Silva et al. 2016).

Generally, diastase enzyme is role to break down the complex sugars into simple sugars. This enzyme is role to digest of starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or thermolabile. Thus, this condition can be used to evaluate of overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, the diastase activity is also used to evaluate honey age which is related to storage time and the temperature because the

Commented [I42]: deleted
Commented [I43]: deleted
Commented [144]: Should be caused by
Commented [145]: Should be that is characterized
Commented [146]: Should be cells that have
Commented [I47]: deleted
Commented [I48]: Should be bees actively breaks down sucrose
Commented [I49]: deleted
Commented [I50]: deleted
Commented [I51]: Should be secretion mostly contains invertase enzymes
Commented [152]: Should be indentify
Commented [153]: Should be be indicate

ntod [15/1] Should

 -{	Commented [157]. Should be used
	Commented [I58]: deleted
-{	Commented [I59]: Should be digesting
1	Commented [I60]: Replaced by the

210 diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and 211 Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed to reported by 212 Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from Hainan province (China) was 6.70 Göthe. 213 Furthermore, also was differed to reported by Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling 214 Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activity of honey from A. cerana were 215 reported by previously researchers are influenced by the different plant types as the nectar source to produce honey, 216 different sugars content, and different geographical origin.

Furthermore, the HMF of A. cerana honey was produced by the sugar palm and coconut saps in our study was ranging 217 218 from 2.24 to 5.81 mg/kg (Table 2). This HMF indicate that honey from our study in fresh condition and acceptable by SNI 219 for the beekeeping honey including from A. cerana and A. mellifera is not exceed 40 mg/kg (National Standardization 220 Agency of Indonesia 2018) and also acceptable by the international standard has been regulated by Codex Alimentarius is 221 not exceed 40 mg/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018). The fresh honey after harvested is 222 generally contain the low of HMF is ranging from 0 to 4.12 mg/kg honey. Hydroxymethylfurfural is resulted from the 223 degradation of honey monosaccharide especially fructose and glucose under acid condition and accelerated by the heating. 224 This reaction is producing levulinic and formic acids (Da Silva et al. 2016).

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana					
Treatments	Diastase enzyme activity (DN)	Hydroxymethylfurfural (mg/kg)	Acidity (ml NaOH/kg		
SP0	7.57	5.78	36.33		
CP0	5.17	5.04	26.00		
SCP0	9.04	4.75	28.60		
SP1	6.86	4.77	29.68		
CP1	8.51	5.81	28.26		
SCP1	6.85	2.24	30.61		

227 Abbreviations: sugar palm sap without added by sugar palm pollen (SPO); coconut sap without added by sugar palm pollen (CPO); 228 229 coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCPO); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar 230 palm pollen (SCP1). 231

232 Hydroxymethyfurfural is formed after honey removed from the comb or when the wax covers was opened and the 233 advanced processing like heating process. The increasing of the HMF content is occur sin honey with the high acidity and 234 accelerated by the heating process. However, the HMF content also sinfluenced by several factors such as sugars content, 235 organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In 236 addition, HMF is also can be formed at the low temperatures, acidic condition, and sugars dehydration reactions. 237 Therefore, the higher of HMF content is impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The 238 HMF of honey from the A. cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for 239 multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana were reported by previously 240 241 researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and 242 different geographical origin.

243 Acidity of honey

244 Free acidity is one of an important parameter to evaluate the honey deterioration which is characterized by the organic 245 acids presence in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and 246 phosphates (Da Silva et al. 2016). The recent study showed that the honey acidity from A. cerana was produced by the 247 sugar palm and coconut saps was ranging from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of A. cerana honey in 248 our study is acceptable by SNI is not exceed 50 ml NaOH/kg for the beekeeping honey including A. cerana and A. mellifera. Furthermore, is also acceptable of the international standard has been regulated by the Codex Alimentarius is not 249 250 exceed 50 meq/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

251 The sour taste of honey originated from the several of organic and inorganic acids, where the dominant of organic acid 252 present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase which is added 253 by the bees when they are convert a nectar into honey, so can protecting a nectar until honey maturity. This protecting 254 mechanism is occurreds by the inhibit of microorganisms activity present in honey (Da Silva et al. 2016). This inhibit 255 mechanism includes the combination several factors such as low moisture and presence hydrogen peroxide which is 256 produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of cell wall resulting in change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 2018). 257

258 The acidity total content in honey is small quantity, but the present in honey is very important because can influencing 259 the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity is indicating the 260 fermentation process had been occurred when some reducing sugar is break down into acetic acid. Honey acidity content is related to the yeast number where them is break down some reducing sugar into ethanol and if it's reaction with the 261 262 oxygen is formed the acetic acid which is increasing the honey acidity. The values higher of acidity may be indicating the

Commented [161]: Should be it was also

Commented [162]: Should be contains Commented [163]: Should be the result of Commented [164]: Should be monosaccharide, especially Commented [165]: Should be glucose, under Commented [166]: Should be conditions Commented [167]: deleted

Commented [I68]: Should be not italic
Commented [I69]: Should be cover
Commented [170]: should be occurs
Commented [171]: Should be is accelerated
Commented [172]: Should be content is also
Commented [173]: Should be can also
Commented [174]: deleted
Commented [175]: Should be content's impact

Commented [176]: Should be not to exceed
Commented [177]: Should it is
Commented [178]: Should be by
Commented [179]: Should be not to exceed
Commented [I80]: deleted
Commented [I81]: deleted
Commented [I82]: deleted
Commented [183]: Should be so it can protect
Commented [184]: Should be caused
Commented [185]: Should be inhibition
Commented [I86]: deleted

263 fermentation process of sugars into organic acids. The honey acidity is affected by several factors such as different content 264 of organic acids, different geographical origin and the seasonal when honey harvested (Da Silva et al. 2016; Tornuk et al. 265 2013). The honey acidity from the bee A. cerana in our study (Table 2) was differed to previously studied by Wu et al. 266 (2020) for A. cerana cerana honey is 0.80 mol/kg and Guerzou et al. (2021) is ranging 11 to 47 meq/kg for Algerian 267 honey. Furthermore, is differed to reported by Erwan et al. (2020) that honey acidity from the bee A. mellifera were 268 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 22.00 to 43.00 ml NaOH/kg. The different 269 acidity has been reported previously with our studied is affected by the different plant types as the nectar source to produce 270 honey, honey pH, geographical origin, and organic acids compound, however in our study has not measured the organic 271 acid compound and honey pH.

272 Honey production potency from the sugar palm and coconut saps

Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized 273 274 which can contributing for communities' income. Generally, the main production from the coconut (Cocos nucifera L.) 275 was harvested is coconut fruit to advanced process into coconut oil and copra. Theses commodities have a high price, but 276 if just to producing coconut oil and copra are high risk for the farmers because they are just preparing in the raw material. Therefore, the utilizing of the sap can be produced by the coconut and sugar palm were also potency feed for the bees was 277 278 used as the nectar source to produce honey. Sugar palm and coconut saps are the feed potential which is studied by Erwan 279 et al. (2021b) that the coconut and sugar palm saps can increasing the number of honey cell and bee bread cell of the bee 280 A. cerana. Furthermore, is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana 281 such as increase the brood cells number, colony weight, and the honey production (Erwan et al. 2022). In addition, the saps 282 from coconut and sugar palm are usually used by the farmers to produce sugar by using a traditional process.

283 The coconut plants can produce of 12 stalks in a year and in one of stalk can produce sap of 90 liters, thus, in one 284 coconut plant can produce of 1,080 liters of sap. Furthermore, if the farmers have one hectare of the land which are planted by 100 coconut plants (distance 10 m \times 10 m), so can be produced for about 108,000 liters of coconut sap. To produce 1 285 286 kg of honey is required coconut sap for about 7 liters and in a year is required 84 liters to produce 12 kg of honey. Thus, 287 honey potency in a year from 100 hectares of the land can be calculated as follows: 10,800,000 liters of sap divided by 84 288 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big 289 290 potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa 291 Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

Sugar palm plant can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapping not exceed of 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant is ranging from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). Furthermore, if in one hectare of plantation we have 100 sugar palm plants with the distance for planted is 10 m × 10 m, so can be obtained of sap for 115,000 liters.

297 Based on the field investigation showed that to produce 1 kg of honey from the sugar palm sap is required for about 10 298 liters and in a year is required for about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and 299 300 multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 301 tons/month in 100 hectares area. This potency indicate that the sugar palm sap has a big potency to produce honey which is 302 supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 303 304 tones, 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. It can be concluded that Honey is produced by the bee A. cerana from sugar palm and coconut saps as the feed have the quality which is acceptable by Indonesian 305 306 national standard and international standard has been regulated by the Codex Alimentarius. Honey potency production from the coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 128.571 307 308 tons/month, while in sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

ACKNOWLEDGEMENTS

We thank to all beekeepers and farmers which are support and permitting our teams to conduct this study in North
 Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

312

309

REFERENCES

Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee *Tetragonula laeviceps (Hymenoptera: Meliponinae)*. Biodiversitas 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.

315 316 Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, *Tetragonula laeviceps*, from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html.

Commented	[187]: Should be contribute to
Commented	[188]: Should be as coconut
Commented	[189]: Should be advance the
Commented	[190]: Should be these
Commented	[191]: Should be but producing
Commented	[192]: Should be preparing raw material
Commented	[193]: Should be increase
Commented	[194]: Should be cells
Commented	[195]: Should be it is
Commented	[196]: Should be increasing
Commented	[197]: deleted
Commented	[198]: deleted
Commented	[199]: deleted
Commented	[1100]: Should be requires
Commented	[1101]: Should be 84 liters is required
Commented	[1102]: Should be plants
Commented	[1103]: Should be tapped not to exceed
Commented	[1104]: Should be The
Commented	[1105]: Should be year it is required

-	Commented [I106]: honey
	Commented [I107]: are

Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta

Agussanni, Agus A, Onanni N, Dudisatria K05, 2016. Interpret of hope of noise of ages in usine of raken stema and Ngipar Oninnigsturi Togyakara. Bul Peternak 42(1): 50-56. https://doi.org/10.2105/buletinpeternak.v4211.28294.
Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.2105/buletinpeternak.v41i4.13593.
AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin

Franklin Station, Washington D.C. Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.

Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram. Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis mellifera* with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci

Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482. Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from

Apis cerana from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. https://doi.org/10.21776/ub.jtapro.2021.022.01.5 Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification.

Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.

uredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097. Escu

Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.

Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/https://doi.org/10.3390/resources10100094. Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI

10.1007/978-3-642-16422-4 3

Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on vo https://doi.org/10.1016/j.foodchem.2013.09.105. origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557.

Machado AM, Tomás A, Russo Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.

Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern Med 13: 1-12. Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special

focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822. National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.

Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and

Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.
Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.

Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (Apis cerana javana Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.

Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York. Supeno B, Etwan, Agussalim. 2021. Enhances production of coffee (*Coffee robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062. Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.

Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.

https://doi.org/10.1016/j.indcrop.2012.12.042. Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang. Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.

Mu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225. Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food

Biosci 1: 6-25. https://doi.org/10.1016/j.fbio.2013.02.001.
 Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

erwan apis <apiserwan@gmail.com>

[biodiv] Editor Decision

3 pesan

Smujo Editors <smujo.id@gmail.com> 1 November 2022 pukul 10.35 Kepada: Erwan <apiserwan@gmail.com>, Agussalim <agussalim@mail.ugm.ac.id>

Erwan, Agussalim:

We have reached a decision regarding your submission to Biodiversitas Journal of Biological Diversity, "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps".

Our decision is: Revisions Required

Reviewer A:

This study aimed to evaluate the honey quality based on the chemical composition from the bee A. cerana and the honey potency produced by the coconut and sugar palm saps. The paper is clear objectives. The topic is an important subject. However, I have the following comments for revision consideration that I put in the text.

Recommendation: Revisions Required

Biodiversitas Journal of Biological Diversity

A-12166-Article Text-1062944-1-4-20221004.doc

erwan apis <apiserwan@gmail.com> Kepada: Smujo Editors <smujo.id@gmail.com> 1 November 2022 pukul 13.26

Dear Editor in Chief Biodiversitas

Thanks very much for the information and we will revise according to reviewer comments [Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

erwan apis <apiserwan@gmail.com> Kepada: Smujo Editors <smujo.id@gmail.com> 2 November 2022 pukul 22.38

Dear Editor in Chief Biodiversitas

We have been revising our paper according to reviewer comments and the revision is made for red color (File is attached). In addition, we also have been submitted to the Biodiversitas System. Please find the attached file.

Gmail - [biodiv] Editor Decision

[Kutipan teks disembunyikan]

A-12166-Article Text-1062944-1-4-20221004 Second REVISION.doc
 2001K

1

2

7

21

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,•}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp/Fax: +62370-633603/+62370-640592. *email: apiserwan@gmail.com

²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta – 55281, Indonesia

8 Abstract. One of the big problems when keeping of honeybees is the limited of sustainable feed, especially in the rain season. The 9 objectives of this study were to evaluate the honey quality from the bee A. cerana based on the chemical composition, honey potency 10 produced by the coconut and sugar palm saps. This study using thirty colonies of the bee A. cerana were divided into six treatments 11 consists of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 12 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut 13 sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the A. cerana were 14 moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), 15 hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be concluded that 16 17 the quality of A. cerana honey which are produced by the sugar palm and coconut saps are acceptable by the Indonesia national standard 18 and international standard. The sugar palm and coconut saps have a big potential as the bee feed especially for the bee A. cerana.

19 Key words: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

20 Running title: Honey quality of *Apis cerana* produced by sugar palm and coconut saps

INTRODUCTION

22 Honeybee of A. cerana is one of the bees from the Apis genus which is include the local bee which is spread in some 23 regions in Indonesia are Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 24 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by the beekeepers 25 using traditional hives (for example using a coconut log hive) and semi modern hive (box hive without nest frame) to produce honey. Furthermore, several regions have been practicing the beekeeping of the bee A. cerana has been reported 26 by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok. 27 28 However, the beekeeping of A. cerana is mostly using traditional hives or use box hives, but is not completed by the honey 29 frame like a beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal jelly, and propolis, 30 however their production is lower compared to the bee A. mellifera.

31 One of the problems faced by the beekeepers in Indonesia is the limited feed sustainability as the raw material to 32 produce honey, bee bread, and royal jelly. The limitation feed is the very serious problem have been faced by the 33 beekeepers because they have no area which is used to plant several plants which are used as the feed source to produce the honeybees products. Honeybees feeds is divided into two types namely nectar and pollen, where nectar is obtained by 34 35 the foragers from the plant flowers (nectar floral) and nectar extrafloral which is obtained by the foragers from stalk and 36 leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by 37 using all body parts and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting 38 nectar and pollen from the plant flowers, the foragers role as the pollinator agent by transporting pollen from the anther to 39 pistil so that the pollination process occurs. This process is continuously done by the foragers until their honey stomach is 40 full of nectar and their corbicula has been deposited by the pollen. This pollination impacts on the increasing the plants productivity (Pohorecka et al., 2014; Supeno et al., 2021). 41

One of the strategies to produce the sustainability honey from the bee *A. cerana* by using a sap from the plants such as sugar palm and coconut. Several studies have been conducted by using a sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed can enhance the production of honey cells and bee bread cells. However, the use of sap from coconut and sugar palm can increasing the honey and bee bread cells compared to control group without sap as the feed (multifloral nectar). Furthermore, Erwan et al. (2022) was also reported that the use of sugar palm and coconut saps which are each added by sugar palm pollen can improving the bee A. cerana productivity such as increase the honey production, brood cells number, and colony weight. In addition, in other study showed that the use of extrafloral nectar namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed which is resulting the honey chemical composition (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national standard and international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, the studies about the chemical composition of honey from the bee A. cerana which are produced from the sugar palm sap, coconut sap and their honey potency production from both sap sugar palm and coconut have not been studied. Therefore, the objectives of this study were to evaluate the honey quality based on the chemical composition from the bee A. cerana, honey potency produced by the coconut and sugar palm saps.

MATERIALS AND METHODS

58 Study area

This research has been conducted in the North Duman Village (8°32'10"S 116°09'32"E), Lingsar Sub-district, West Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty of *A. cerana* colonies were divided into six treatments and each five colonies per treatment as the replication. The saps were used in our study were obtained from the stalk of coconut (*Cocos nucifera* L.) and sugar palm (*Arenga pinnata*) and the pollen source from the sugar palm were shown in Figure 1. The stalks of coconut and sugar palm were cut and then put in the plastic bottle which was used to storage the sap which was secreted by their stalks. The treatments in our study were sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

Figure 1. Coconut sap (left), sugar palm sap (center), and sugar palm pollen (right)

The technique was used to given sugar palm and coconut saps and sugar palm pollen (shown in Figure 2) was according to previously method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo were completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo were placed one meter of the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place colony to avoid the foragers to collect pollen and sap from the other treatments.

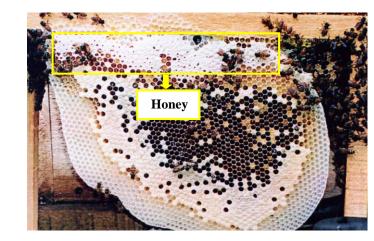


Figure 2. Technique to given the sugar palm and coconut saps (left) and sugar palm pollen (right) (Erwan et al. 2022, 2021b)

107 **Procedures**

108 Honey quality

109 Honey from the A. cerana (shown in Figure 2) was harvested after beekeeping for three months by using a coconut and 110 sugar palm saps. Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the A. cerana were evaluated based on the chemical 111 composition consists of moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and 112 acidity. The moisture content was analyzed by using a proximate analysis based on the method from Association of 113 Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed by using a Layne-Enyon method and 114 115 sucrose content was analyzed by a Luff Schoorl method were described by AOAC (2005). Diastase enzyme activity, hydroxymethylfurfural (HMF), and free acidity were analyzed based on the harmonised methods of the international honey 116 117 commission (Machado et al. 2022). 118

Figure 2. Honey from *A. cerana* was produced from the sugar palm and coconut saps

135 Honey production from sugar palm and coconut saps

Sugar palm and coconut saps each ten liters were used to measuring the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed in the plastic plate in front of the box hives at the distance of one meter. In addition, the honey production without using of sugar palm and coconut saps were measured for one year of the beekeeping which is used to calculate the contribution of sugar palm and coconut saps in honey production. Honey from *A. cerana* was harvested with cut the honey cells (Figure 2) and squezed to separate wax and honey. Afterward, honey was measured their production by using a digital scale and stored in the regrigerator.

142 Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare which was calculated from the sap production per tree multiplied by the trees number in one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap and then honey production was measured by cylinder glass

149 Data analysis

The data of honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using a descriptive analysis (Steel et al. 1997).

152

RESULTS AND DISCUSSION

153 Moisture content of honey

Honey is composed by water as the second largest of honey constituents and its ranging from 15 to 21 g/100 g, depending on the plant types as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is also affected by honey maturity level, processing postharvest, and storage condition (Da Silva et al. 2016). The honey moisture is affecting the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the temperature and humidity or depending on the season (rain and dry seasons) and honey moisture can increase during the postharvest processing such as storage condition because honey is hygroscopic that can absorbs the moisture in the air (Da
 Silva et al. 2016; Karabagias et al. 2014).

The recent study showed that the honey moisture from the bee A. cerana which was produced by sugar palm and 162 163 coconut saps and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted by Indonesian national standard (SNI) where the moisture for beekeeping honey including the bee A. cerana and A. 164 mellifera is not exceed 22% (National Standardization Agency of Indonesia 2018) and higher compared to international 165 166 standard which is regulated by Codex Alimentarius is not exceed 20% (Thrasyvoulou et al. 2018). The variation of honey 167 moisture of the bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm and coconut, however in our study has not been measured. The higher moisture content is requiring the long time to 168 ripening of honey and process of decreasing honey moisture has been started by the bees when they are taking nectar from 169 170 plant flowers or saps as the raw material to produce honey. Furthermore, a small portion of moisture content has been 171 evaporated in the honey sack before transferred to the other bee which is working in the hive. This transfer is rapid 172 depending on the temperature, colony strength, and nectar availability (Da Silva et al. 2016).

173

174	Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee A. cerana
1/7	Table 1. The moisture, reducing sugar, and sucrose contents of noney from the bee A. ceruna

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0);
coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm
pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

180 Honey production process is started from the foragers collecting a nectar from the plant flowers or extrafloral nectar 181 and then stored in the honey stomach. After that, the foragers will be transferring a nectar that has been collected to the 182 other bees who are working to process a nectar into honey in their mouth, then put in honey stomach and then is transferred to other bees for several times until honey is ripening. A considerable amount of water will be evaporated in 183 this process and this continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes 184 185 (Balasubramanyam 2021; Zhang et al. 2021). The honey moisture content in our study was differed to reported by Wang et 186 al. (2021) that honey moisture from the bee A. cerana which is collected from 42 different honeycombs from China is 187 ranging from 17.03 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% 188 for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) was also 189 reported that the honey moisture produced by the A. mellifera bee by using sugar palm and coconut saps is ranging from 19.34 to 20.94%. The different honey moisture content has been reported are affected by the different geographical origins 190 191 which is impact on the different plant types can be growth each region, different environmental condition (temperature and 192 humidity), and also different bee species which is impact on the different ability to evaporate water in the honey.

193 Reducing sugar and sucrose contents of honey

Sugars in honey are composed by monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

198 The recent study showed that the honey reducing sugar from the bee A. cerana were beekeeping by using a sugar palm 199 and coconut saps and their combination as the nectar source to produce honey is ranging from 62.78 to 68.37 % (Table 1). 200 This honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1, but not acceptable for 201 treatments SCP0, SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of 202 Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into simple sugars. It is known that this enzyme is responsible for the conversion of sucrose into glucose and fructose. These 203 204 sugars are included in reducing sugar group and as the main component present in honey. In honey maturity process, the 205 sucrose is break down by the invertase enzyme into simple sugars simultaneously and water will be evaporated so that it 206 will be increasing the reducing sugar content. In addition, enzymes secreted by the worker bees are also can break down 207 the carbohydrate into simple sugars. Furthermore, other enzyme present in honey is diastase enzyme that role to break down starch into simple sugars (Da Silva et al. 2016). The honey reducing sugar in our study (Table 1) was differed to 208 209 reported by Erwan et al. (2020) that honey reducing sugar from the bee A. mellifera which was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 60.15 to 73.69%. The different reducing sugar may be affected by 210 the different bee species which is impact on the different their ability to evaporate water present in honey especially when 211 212 they are convert the complex sugars into simple sugars and different season when done the study which are related to 213 temperature and humidity environmental.

214 The honey sucrose content from the bee A. cerana in our study is ranging from 1.44 to 3.42% (Table 1) and acceptable 215 by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 216 5% for blossom and honeydew honeys (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study 217 originated from sugar palm and coconut saps. The low honey sucrose content in our study is caused by the honey which is 218 219 harvested in mature condition that is characterized by honey cells that have been covered by wax. Furthermore, the 220 invertase enzyme which is produced by the worker bees actively break down sucrose from saps into simple sugars. There 221 are two types of invertase enzymes which are produced by the worker bees, namely glucoinvertase which converts sucrose into glucose and fructoinvertase which converts sucrose into fructose. These enzymes are mostly derived from the bee's 222 223 secretion and only a small portion from the nectar, while the honeydew from the insect's secretion mostly contains 224 invertase enzymes (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) was differed to reported by 225 Erwan et al. (2020) that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm 226 and coconut saps) is ranging from 4.21 to 4.40%%.

227 The honey sucrose content is a very important parameter to evaluate the maturity of honey to identify manipulation, 228 where the high levels may be indicate adulterations by adding the several sweeteners such cane sugar or refined beet sugar. 229 In addition, also indicating the early of harvest, where sucrose is not completed transformed into fructose and glucose, the 230 bees feeding artificial in prolonged time by using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; Escuredo et al. 231 2013; Tornuk et al. 2013). Honey is sugar solution that is supersaturated and unstable so it's easy to crystallize. The honey crystallization is affected by concentration of glucose, fructose, and water. Fructose is the dominant sugar present in honey 232 233 from A. mellifera was produced by several plants as the nectar source which is used by workers to produce honey such as 234 eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey was produced by 235 Brassica napus. Rape honey is higher in glucose and lower in fructose which is impact on the rapidly crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which is impact on 236 the different plant types can growth in each region and impact on the different sugars content from the nectar which is 237 238 produced by the nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; Escuredo et 239 al. 2014; Tornuk et al. 2013). Furthermore, sugars content in honey is influenced by climate (season, temperature, and 240 humidity), processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013).

241 Diastase enzyme activity and hydroxymethylfurfural of honey

242 The recent study showed that the diastase enzyme activity from the bee A. cerana honey was produced by the sugar palm and coconut saps was ranging from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with the 243 244 minimum of 3 DN for the beekeeping honey including the bee A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also acceptable by international standard has been regulated by Codex Alimentarius with 245 the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is contain enzymes which is originate 246 247 from the bees, pollen, and nectar from plant flowers, but the mostly enzymes are added by the bees when they are convert 248 nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 249 2) was differed to reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was 250 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

Diastases are divided into α - and β -amylases which are the natural enzymes present in honey. The α -amylase separates the starch chain randomly in the central to produce dextrin, while the β -amylase separates the maltose in the end chain. Diastase enzyme content in honey is influenced by nectar source (floral and extrafloral nectars) to produce honey and honey geographical origins which are impact on the different chemical composition of the nectar can be produced by the plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species is also influencing the activity diastase because it's related to the distance and the flowers plant numbers can be visited by the foragers when they are collecting nectar and pollen were used to produce honey and bee bread (Da Silva et al. 2016).

258 Generally, diastase enzyme is role to break down complex sugars into simple sugars. This enzyme is role to digesting 259 starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or thermolabile. Thus, this condition can be used to evaluate the overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, 260 261 the diastase activity is also used to evaluate honey age which is related to storage time and the temperature because the diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and 262 263 Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed to reported by 264 Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from Hainan province (China) was 6.70 Göthe. 265 Furthermore, it was also differed to reported by Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activity of honey from A. cerana 266 267 were reported by previously researchers are influenced by the different plant types as the nectar source to produce honey, 268 different sugars content, and different geographical origin.

Furthermore, the HMF of *A. cerana* honey was produced by the sugar palm and coconut saps in our study was ranging from 2.24 to 5.81 mg/kg (Table 2). This HMF indicate that honey from our study in fresh condition and acceptable by SNI for the beekeeping honey including from *A. cerana* and *A. mellifera* is not exceed 40 mg/kg (National Standardization Agency of Indonesia 2018) and also acceptable by the international standard has been regulated by Codex Alimentarius is 273 not to exceed 40 mg/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018). The fresh honey after harvested is generally contains the low of HMF is ranging from 0 to 4.12 mg/kg honey. Hydroxymethylfurfural is the result of the 274 degradation of honey monosaccharide, especially fructose and glucose, under acid conditions and accelerated by heating. 275 This reaction is producing levulinic and formic acids (Da Silva et al. 2016). 276

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana				
Treatments	Diastase enzyme (DN)	activity Hydroxymethylfurfura (mg/kg)	l Acidity (ml NaOH/kg)	
SP0	7.57	5.78	36.33	
CP0	5.17	5.04	26.00	
SCP0	9.04	4.75	28.60	
SP1	6.86	4.77	29.68	
CP1	8.51	5.81	28.26	
SCP1	6.85	2.24	30.61	

279 Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); 280 coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm 281 pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar 282 palm pollen (SCP1). 283

284 Hydroxymethyfurfural is formed after honey removed from the comb or when the wax cover was opened and the 285 advanced processing like heating process. The increasing of the HMF content occurs in honey with the high acidity and accelerated by the heating process. However, the HMF content is also influenced by several factors such as sugars content, 286 287 organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In 288 addition, HMF can also be formed at low temperatures, acidic condition, and sugars dehydration reactions. Therefore, the 289 higher of HMF content's impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The HMF of 290 honey from the A. cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China 291 292 is 1.69 mg/kg. The different HMF content of honey from A. cerana were reported by previously researchers are influenced 293 by the different plant types as the nectar source to produce honey, different sugars content, and different geographical 294 origin.

295 Acidity of honey

277

296 Free acidity is one of an important parameter to evaluate the honey deterioration which is characterized by the organic 297 acids presence in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and 298 phosphates (Da Silva et al. 2016). The recent study showed that the honey acidity from A. cerana was produced by the 299 sugar palm and coconut saps was ranging from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of A. cerana honey in 300 our study is acceptable by SNI is not to exceed 50 ml NaOH/kg for the beekeeping honey including A. cerana and A. 301 *mellifera*. Furthermore, it is also acceptable by the international standard has been regulated by the Codex Alimentarius is 302 not to exceed 50 meq/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

303 The sour taste of honey originated from the several organic and inorganic acids, where the dominant organic acid 304 present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase which is added 305 by the bees when they convert a nectar into honey, so it can protect a nectar until honey maturity. This protecting mechanism is caused by the inhibition of microorganisms activity in honey (Da Silva et al. 2016). This inhibit mechanism 306 307 includes the combination several factors such as low moisture and presence hydrogen peroxide which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of cell wall 308 309 resulting in change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 2018).

310 The acidity total content in honey is small quantity, but the present in honey is very important because can influencing 311 the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity is indicating the fermentation process had been occurred when some reducing sugar is break down into acetic acid. Honey acidity content is 312 related to the yeast number where them is break down some reducing sugar into ethanol and if it's reaction with the 313 oxygen is formed the acetic acid which is increasing the honey acidity. The values higher of acidity may be indicating the 314 315 fermentation process of sugars into organic acids. The honey acidity is affected by several factors such as different content 316 of organic acids, different geographical origin and the seasonal when honey harvested (Da Silva et al. 2016; Tornuk et al. 2013). The honey acidity from the bee A. cerana in our study (Table 2) was differed to previously studied by Wu et al. 317 (2020) for A. cerana cerana honey is 0.80 mol/kg and Guerzou et al. (2021) is ranging 11 to 47 meq/kg for Algerian 318 honey. Furthermore, is differed to reported by Erwan et al. (2020) that honey acidity from the bee A. mellifera were 319 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 22.00 to 43.00 ml NaOH/kg. The different 320 321 acidity has been reported previously with our studied is affected by the different plant types as the nectar source to produce 322 honey, honey pH, geographical origin, and organic acids compound, however in our study has not measured the organic 323 acid compound and honey pH.

324 Honey production potency from the sugar palm and coconut saps

325 Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized which can contribute to communities' income. Generally, the main production from the coconut (Cocos nucifera L.) was 326 harvested as coconut fruit to advance the process into coconut oil and copra. These commodities have a high price, but 327 producing coconut oil and copra are high risk for the farmers because they are just preparing raw material. Therefore, the 328 329 utilizing of the sap can be produced by the coconut and sugar palm were also potency feed for the bees was used as the 330 nectar source to produce honey. Sugar palm and coconut saps are the feed potential which is studied by Erwan et al. 331 (2021b) that the coconut and sugar palm saps can increase the number of honey cell and bee bread cells of the bee A. cerana. Furthermore, it is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana 332 333 such as increasing the brood cells number, colony weight, and the honey production (Erwan et al. 2022). In addition, the 334 saps from coconut and sugar palm are usually used by the farmers to produce sugar by using a traditional process.

335 The coconut plants can produce 12 stalks in a year and in one stalk can produce sap of 90 liters, thus, in one coconut plant can produce 1,080 liters of sap. Furthermore, if the farmers have one hectare of the land which are planted by 100 336 coconut plants (distance 10 m \times 10 m), so can be produced for about 108,000 liters of coconut sap. To produce 1 kg of 337 honey requires coconut sap for about 7 liters and in a year 84 liters is required to produce 12 kg of honey. Thus, honey 338 potency in a year from 100 hectares of the land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters 339 340 of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 341 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa 342 343 Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

344 Sugar palm plants can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapped not to 345 exceed 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant is ranging from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). 346 Furthermore, if in one hectare of plantation we have 100 sugar palm plants with the distance for planted is $10 \text{ m} \times 10 \text{ m}$, so 347 can be obtained of sap for 115,000 liters. 348

349 The field investigation showed that to produce 1 kg of honey from the sugar palm sap is required for about 10 liters and 350 in a year it is required for about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm sap in 351 a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 tons/month in 100 352 353 hectares area. This potency indicate that the sugar palm sap has a big potency to produce honey which is supported by the 354 report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 tones, 304.80 355 quintals/hectare, and 188.52, respectively, in the year of 2021. It can be concluded that honey is produced by the bee A. 356 cerana from sugar palm and coconut saps as the feed have the quality which are acceptable by Indonesian national 357 standard and international standard has been regulated by the Codex Alimentarius. Honey potency production from the 358 coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 128.571 tons/month, while 359 360 in sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

361

ACKNOWLEDGEMENTS

362 We thank to all beekeepers and farmers which are support and permitting our teams to conduct this study in North 363 Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

364

380

REFERENCES

- 365 Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 366 367 368 369 370 371 372 373 374 375 376 377 378 379 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.
 - Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html.

Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bul Peternak 42(1): 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294.

Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.21059/buletinpeternak.v41i4.13593.

AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.

Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.

Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram.

- 381 382 383 384 385 386 387 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 $\begin{array}{r} 418\\ 419\\ 420\\ 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434 \end{array}$ 435 436
- Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis mellifera* with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482.
- Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from Apis cerana from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. https://doi.org/10.21776/ub.jtapro.2021.022.01.5

Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.

- Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.
- Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097.
- Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
- Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/10.3390/resources10100094.
- Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI 10.1007/978-3-642-16422-4_3.
- Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
- Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.
- Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. BMC Complement Altern Med 13: 1-12.
- Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822.
- National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.
- Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.
- Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
- Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
- Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.
- Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (*Apis cerana javana* Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.
- Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
- Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (*Coffea robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062.
- Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.
- Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
- Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
- Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.
- Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by *Apis cerana cerana*, *Apis dorsata* and *Lepidotrigona flavibasis*. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225.
- Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.
- Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,*}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp/Fax: +62370-633603/+62370-640592. *email: apiserwan@gmail.com

²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta - 55281, Indonesia

Abstract. One of the big problems when keeping-of honeybees is the limited of sustainable feed, especially in the rainy season. The objectives of this study were to evaluate the honey quality from the bee *A. cerana* based on the chemical composition, and honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee *A. cerana* wasere divided into six treatments consistings of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap of 50% + sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the *A. cerana* were moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be concluded that the quality of *A. cerana* honey, which are produced by the sugar palm and coconut saps, isare acceptable by the Indonesian national standard_and international standards. The sugar palm and coconut saps have a-big potential as the-bee feed, especially for the bee *A. cerana*.

20 Key words: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

21 **Running title:** Honey quality of *Apis cerana* produced by sugar palm and coconut saps

INTRODUCTION

23 The hHoneybee of A. cerana is one of the bees from the Apis genus, which is includes the local bee which is spread in 24 some regions in Indonesia, including -are Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 2011: Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced 25 by-the beekeepers using traditional hives (for example using a coconut log hive) and semi-modern hives (box hives 26 27 without nest frames) to produce honey. Furthermore, several regions have been practicing the beekeeping of the bee A. cerana has been reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, 28 29 Bali, and Lombok. However, the beekeeping of A. cerana is mostly using traditional hives or use box hives, but is not 30 completed by the honey frame like then beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal 31 jelly, and propolis. H, however their production is lower compared to the bee A. mellifera.

32 One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to produce honey, bee bread, and royal jelly. The limitation feed is athe very serious problem that has ve been faced by the 33 34 beekeepers because they have no area which is used to plant several plants which are used as the feed source to produce 35 the honeybees' products. Honeybees feeds areis divided into two types, namely nectar and pollen, where nectar is obtained 36 by the foragers from the plant flowers (nectar floral) and nectar extrafloral, which is obtained by the foragers from stalk and leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected 37 38 by using all body parts and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When 39 collecting nectar and pollen from the plant flowers, the foragers role as the pollinator agent by transporting pollen from the 40 anther to pistil so that the pollination process occurs. This process is continuously done by the foragers until their honey 41 stomach is full of nectar and their corbicula has been deposited by the pollen. This pollination impacts on the increasing 42 the plants productivity (Pohorecka et al., 2014; Supeno et al., 2021).

43 One of the strategies to produce the sustainableility honey from the bee *A. cerana* is by using a sap from the plants such as sugar palm and coconut. Several studies have been conducted by using a sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed couldan enhance the production of honey cells and bee bread cells. However, the use of sap from coconut and sugar palm and can increaseing the honey and bee bread cells compared to the control group without sap as the feed (multi-floral nectar).

Commented [Rev1]: please add the citation.

7

22

1

2

Furthermore, Erwan et al. (2022) was-also reported that the usinge of sugar palm and coconut saps which are each added withby sugar palm pollen can improveing the bee A. cerana productivity, such as increasinge the honey production, brood 51 cells number, and colony weight. In addition, in-another study showed that the use of extrafloral nectar, namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed, which is resulting the honey chemical composition (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national standard and the international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, the studies about the chemical composition of honey from the bee A. cerana which are produced from the sugar palm sap, coconut sap, and their honey potency production from both sap sugar palm and coconut have yet to be not been studied. Therefore, the objectives of this study were to evaluate the honey quality based on the chemical composition of rom the bee A. cerana and, the honey potency produced by the coconut and sugar palm saps.

MATERIALS AND METHODS

9 Study area

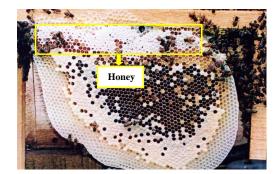
This research has been conducted in the North Duman Village (8°32'10"S₂ 116°09'32"E), Lingsar Sub-district, West Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty-of *A. cerana* colonies were-divided into six treatments and everyach five colonies per treatment as the replication. The saps were-used in our study were obtained from the stalk of cocont (*Cocos nucifera* L.) and sugar palm (*Arenga pinnata*) and the pollen source from the sugar palm were shown in (Fig.ure 1). The stalks of coconut and sugar palm were cut and then put in atthe plastic bottle, which was used to storage the sap which was secreted by their stalks. The treatments in our study were sugar palm pollen (SP0); coconut sap without added by-sugar palm pollen (CP0); cocconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

Figure 1. Coconut sap (left), sugar palm sap (center), and sugar palm pollen (right)

The technique was used to given sugar palm and coconut saps and sugar palm pollen (shown in Fig.ure 2) was according to the previously method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo wasere completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo wasere placed one meter from of the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place the colony to avoid the foragers to collecting pollen and sap from the other treatments.

108 Figure 2. Technique to given the sugar palm and coconut saps (left) and sugar palm pollen (right) (Erwan et al. 2022, 2021b)

109 Procedures


107

110 Honey auality

111 Honey from the A. cerana (shown in Fig.ure 2) was harvested after beekeeping for three months by using a coconut 112 and sugar palm saps. Honey from the five hives in one treatment group was composited into one honey sample and then 113 used to analysis of their chemical composition. Honey quality from the A. cerana wasere evaluated based on the chemical 114 115 composition consisistingts of moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from the Association of Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed by using a Layne-Enyon method, 116 117 and sucrose content was analyzed by a Luff Schoorl method, were described by AOAC (2005). Diastase enzyme activity, 118 hydroxymethylfurfural (HMF), and free acidity were analyzed based on the harmonizsed methods of the international 119 honey commission (Machado et al. 2022)

136 Figure 2. Honey from A. cerana was produced from the sugar palm and coconut saps

137 Honev production from sugar palm and coconut saps

138 Sugar palm and coconut saps everyach ten liters were used to measureing the honey production from the bee A. cerana 139 for three months of beekeeping. The sugar palm and coconut saps were placed oin the plastic plate in front of the box hives 140 at atthe distance of one meter. In addition, the honey production without using-of sugar palm and coconut saps were was 141 measured for one year of the beekeeping, which is used to calculates the contribution of sugar palm and coconut saps in 142 honey production. Honey from A. cerana was harvested with cut the honey cells (Figure 2) and squeezed to separate wax 143 and honey. Afterward, honey was measured their production by using a digital scale and stored in the referigerator.

144 Production of saps from coconut and sugar palm

145 The production of sap from coconut was measured for a year, while the sugar palm sap based on the previously studied 146 was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The 147 production of coconut and sugar palm saps per hectare which was calculated from the sap production per tree multiplied 148 149 by the trees-number of trees in a one hectare area. After three months of beekeeping, honey from both treatments, sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap, and then honey production was measured by cylinder glass 150

151 Data analysis

The data onf honey quality, production potency of honey from sugar palm and coconut saps, honey production, and 152 153 production of saps were analyzed by using a descriptive analysis (Steel et al. 1997).

154

RESULTS AND DISCUSSION

155 Moisture content of honey

156 Honey is composed ofby water as the second largest of honey constituents, and its ranging from 15 to 21 g/100 g, 157 158 depending on the plant speciestypes as the nectar source, which is affected by the botanical origin. Furthermore, honey moisture is also affected by honey maturity level, processing postharvest, and storage conditions (Da Silva et al. 2016). The honey moisture is affect<u>sing</u> the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the temperature and humidity or depending on the season (rainy and dry seasons), and <u>H</u>honey moisture can increase during the postharvest processing, such as storage conditions, because honey is hygroscopic that can absorbs the moisture in the air (Da Silva et al. 2016; Karabagias et al. 2014).

A The recent study showed that the honey moisture from the bee A. cerana, which was produced by sugar palm and 164 165 coconut saps, and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted 166 by the Indonesian national standard (SNI), where the moisture for beekeeping honey, including the bee A. cerana and A. 167 mellifera, does is not exceed 22% (National Standardization Agency of Indonesia 2018) and is higher compared to the 168 international standard which is regulated by Codex Alimentarius regulated is not exceed 20% (Thrasyvoulou et al. 2018). 169 The variation of honey moisture of the bee A. cerana in our study may be caused by the different moisture content of both 170 saps from sugar palm and coconut, however in-our study has not been measured. The higher moisture content is 171 requiresing the a long time to for ripening of honey, and process of decreasing honey moisture has been started by the bees 172 start the process of -decreasing honey moisture when they are takingtake nectar from plant flowers or saps as the raw 173 material to produce honey. Furthermore, a small portion of moisture content has been evaporated in the honey sack before 174 being transferred to the other bee, which is working in the hive. This transfer is rapid depending on the temperature, 175 colony strength, and nectar availability (Da Silva et al. 2016).

176

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

 178
 Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0);

 179
 coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SP1); coconut sap of 50% was added by sugar palm pollen (SCP1).

 180
 palm pollen (SCP1).

 182
 palm pollen (SCP1).

183 The Honey production process is started withfrom the foragers collecting-a nectar from the plant flowers or extrafloral 184 nectar and then stored in the honey stomach. After that, the foragers will be-transferring athe nectar that has been collected 185 to the other bees who are working to process athe nectar into honey in their mouth, then put it in the honey stomach and 186 then is-transferred it to other bees for several times until honey is ripening. A considerable amount of water will be 187 evaporated in this process, which and this continues with the help of wing fans that can regulate the air humidity for about 188 15 to 20 minutes (Balasubramanyam 2021; Zhang et al. 2021). The honey moisture content in our study was differed from to reported by Wang et al. (2021) that honey moisture from the bee A. cerana, which is collected from 42 different 189 190 honeycombs from China rangesis ranging from 17.03 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). 191 192 Furthermore, Erwan et al. (2020) was also reported that the honey moisture produced by the A. mellifera bee by using sugar palm and coconut saps is rangesing from 19.34 to 20.94%. The different honey moisture content has been reported to 193 194 beare affected by the different geographical origins, which is impacts on the different plant types that can be grownth in 195 each region, different environmental conditions (temperature and humidity), and also different bee species, which is 196 impact on the different ability to evaporate water in the honey.

197 Reducing sugar and sucrose contents of honey

Sugars in honey are composed <u>ofby</u> monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

202 A The recent study showed that the honey-reducing sugar from the bee A. cerana wasere beekeeping by using a sugar 203 204 palm and coconut saps, and their combination as the nectar source to produce honey is rangesing from 62.78 to 68.37 % (Table 1). This honey-reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1, but not 205 acceptable for treatments SCP0, and SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization 206 Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that changes the sap 207 sucrose into simple sugars. It is known that this enzyme is responsible for the convertingsion of sucrose into glucose and 208 fructose. These sugars are included in the reducing sugar group and as the main component present in honey. In the honey 209 maturity process, the sucrose is break down by the invertase enzyme into simple sugars simultaneously_ and water will be 210 211 212 evaporated tso that it will be increaseing the reduceding sugar content. In addition, enzymes secreted by the worker bees are also can also break down the carbohydrate into simple sugars. Furthermore, another enzyme present in honey is the diastase enzyme that role to breaks down starch into simple sugars (Da Silva et al. 2016). The honey-reducing sugar in our

study (Table 1) was differed from what waste reported by Erwan et al. (2020), that honey reducing sugar from the bee *A. mellifera* which was produced by extrafloral nectar (sugar palm and coconut saps) is rangesing from 60.15 to 73.69%. The different reducing sugar may be affected by the different bee species, which is impacts on the different their ability to evaporate water present in honey, especially when they are convert the complex sugars into simple sugars and different seasons when done the study which are related to temperature and humidity environmental.

218 The honey sucrose content from the bee A. cerana in our study is rangesing from 1.44 to 3.42% (Table 1) and 219 220 acceptable by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the International standard has been regulated by Codex 221 Alimentarius is not exceed 5% for blossom and honeydew honeys (Thrasyvoulou et al. 2018). Naturally, sucrose present in 222 honey in our study originated from sugar palm and coconut saps. The low honey sucrose content in our study is caused by 223 the honey which is harvested in mature condition that is characterized by honey cells that have been covered by wax. 224 225 Furthermore, the invertase enzyme which is produced by the worker bees actively breaks down sucrose from saps into simple sugars. There are two types of invertase enzymes that which are produced by the worker bees, namely 226 glucoinvertase, which converts sucrose into glucose and fructoinvertase, which converts sucrose into fructose. These 227 228 enzymes are mostly derived from the bee's secretion and only a small portion from the nectar, while the honeydew from the insect's secretion mostly contains invertase enzymes (Da Silva et al. 2016). The honey sucrose content in our study 229 (Table 1) was differed from to reported by Erwan et al. (2020), that honey sucrose content from the bee A. mellifera was 230 produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 4.21 to 4.40% %.

231 The honey sucrose content is a very important parameter to evaluate the maturity of honey to identify manipulation, where the high levels may be-indicate adulterations by adding the several sweeteners such as cane sugar or refined beet 232 233 sugar. In addition, also indicating the early of harvest, where sucrose is not completelyd transformed into fructose and 234 glucose, the bees feeding artificially for aim prolonged time-by using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 235 2013; Escuredo et al. 2013; Tornuk et al. 2013). Honey is a sugar solution that is supersaturated and unstable, so it's easy 236 to crystallize. The honey crystallization is affected by the concentration of glucose, fructose, and water. Fructose is the 237 dominant sugar present in honey from A. mellifera was produced by several plants as the nectar source that workers 238 usewhich is used by workers to produce honey such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from 239 honeydew, except in rape honey was produced by Brassica napus. Rape honey is higher in glucose and lowers in fructose 240 which is impacts on theits rapidly crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent 241 on the geographical origins which is impacts on the different plant types that can growth in each region and impact on the 242 different sugars content from the nectar, which is produced by the nectary gland of plant flowers (Agus et al. 2021; 243 Agussalim et al. 2019; Da Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013). Furthermore, the sugars content in 244 honey is influenced by climate (season, temperature, and humidity), processing (heating process), and storage time (Da 245 Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013).

246 Diastase enzyme activity and hydroxymethylfurfural (HMF) of honey

TheA recent study showed that the diastase enzyme activity from the bee A. cerana honey was-produced by the sugar 247 248 palm and coconut saps-was rangeding from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with the 249 a_minimum of 3 DN for the beekeeping honey, including the bee A. cerana and A. mellifera (National Standardization 250 251 Agency of Indonesia 2018), and also acceptable by the international standard has been regulated by Codex Alimentarius with the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is that it contains enzymes which is 252 originatinge from the bees, pollen, and nectar from plant flowers, but the mostly enzymes are added by the bees when they 253 are convert nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our 254 study (Table 2) was differed from what wasto reported by Erwan et al. (2020), that the diastase enzyme activity of honey 255 from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 256 Schade unit.

257 Diastases are divided into α - and β -amylases, which are the natural enzymes present in honey. The α -amylase separates 258 the starch chain randomly in the centernal to produce dextrin, while the β -amylase separates the maltose in the end chain. 259 The nectar source Diastase enzyme content in honey is influenceds diatase enzyme content in honey by nectar source 260 (floral and extrafloral nectars) to produce honey and honey geographical origins, which are-impacts on-the different 261 chemical composition of the nectar can be produced by the plants which is impacts on-the honey chemical composition. 262 especially diastase enzyme activity. In addition, the bee species are-is also influencing the activity diastase because it's 263 related to the distance, and the flowers plant numbers that can be visited by the foragers when they are collecting nectar 264 and pollen were-used to produce honey and bee bread (Da Silva et al. 2016).

Generally, the diastase enzyme has theis role of to-breaking down complex sugars into simple sugars. In addition, tThis
 enzyme is role to digesting starch into maltose (disaccharide) and maltotriose (trisaccharide), which are sensitive to heat or
 thermolabile. Thus, this condition can be used to evaluate the overheating and preservation degree of honey (Da Silva et al.
 2016). Furthermore, the diastase activity is also used to evaluate honey age_which is-_related to storage time and the
 temperature because the diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al.
 2016; Yücel and Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed
 to reported byfrom Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from the Hainan province

272 (China) was 6.70 Göthe, Furthermore, it was also differed from to reported by Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activitiesy of honey from A. cerana were reported by previously researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and different geographical origin.

273 274 275 276 277 278 279 Furthermore, the HMF of A. cerana honey was produced by the sugar palm and coconut saps in our study was rangeding from 2.24 to 5.81 mg/kg (Table 2). This HMF indicates that honey from our study in fresh condition and acceptable by SNI for the beekeeping honey, including from A. cerana and A. mellifera, is not exceed 40 mg/kg (National Standardization Agency of Indonesia 2018) and also acceptable by the international standard has been regulated by Codex 280 Alimentarius is not to exceed 40 mg/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018). After harvesting, 281 The fresh honey after harvested is generally contains athe low-of-HMF is ranging from 0 to 4.12 mg/kg honey. 282 Hydroxymethylfurfural is the result of the degradation of honey monosaccharides, especially fructose and glucose, under 283 acid conditions and accelerated by heating. This reaction is producesing levulinic and formic acids (Da Silva et al. 2016).

284 285 Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana

Treatments	Diastase e (DN)	nzyme	activity	Hydroxymethylfurfural (mg/kg)	Acidity (ml NaOH/kg)
SP0	7.57			5.78	36.33
CP0	5.17			5.04	26.00
SCP0	9.04			4.75	28.60
SP1	6.86			4.77	29.68
CP1	8.51			5.81	28.26
SCP1	6.85			2.24	30.61
SNI	>3			<40	<u><50</u>
Codex Alimentarus	>3			<40	<50

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); 286 287 coconut sap a pair sapa pair point (cro), to cocont sap of 50% + sugar pair point (cro), to cocont sap was added by sugar pair point (cro), point (cro), so f 50% + sugar pair sap was added by sugar pair point (CPI); coconut sap of 50% + sugar pairs ap of 50% was added by sugar pairs point (CPI); coconut sap of 50% + sugar pairs ap of 50% was added by sugar pairs point (CPI); coconut sap of 50% + sugar pairs ap of 50% was added by sugar pairs point (CPI); coconut sap of 50% + sugar pairs ap of 50% was added by sugar pairs point (CPI); coconut sap of 50% + sugar pairs ap of 50% was added by sugar pairs point (CPI); coconut sap of 50% + sugar pairs poirs point (CPI); coconut sap of 50% + sugar pairs point 288 289 290 palm pollen (SCP1).

Hydroxymethylfurfural is formed after the honey is removed from the comb or when the wax cover iwas opened and 291 292 the advanced processing like heating process. The increaseing of the HMF content occurs in honey with the high acidity 293 and is accelerated by the heating process. However, the HMF content is also influenced by several factors such as sugars 294 content, organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral 295 source). In addition, HMF can also be formed at low temperatures, acidic conditions, and sugars dehydration reactions. 296 Therefore, the higher of HMF content's impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The HMF of honey from the *A. cerana* in our study (Table 2) was differed to previously reported by Wu et al. (2020) for multifloral honey of *A. cerana cerana* from China is 3.80 mg/kg and 1.69 mg/kg for *A. cerana* honey from Qinling 297 298 299 Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana were reported by previously 300 researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and 301 different geographical origin.

302 Acidity of honey

303 Free acidity is one of the an-important parameters to evaluate the honey deterioration which is characterized by the 304 presence of the organic acids presence in equilibrium with internal esters, lactone, and several inorganic ions such as 305 sulfates, chlorides, and phosphates (Da Silva et al. 2016). This The recent study showed that the honey acidity from A. 306 cerana was produced by the sugar palm and coconut saps was rangeding from 26.00 to 36.33 ml NaOH/kg (Table 2). The 307 acidity of A. cerana honey in our study is acceptable by SNI is not to exceed 50 ml NaOH/kg for the beekeeping honey. 308 including A. cerana and A. mellifera. Furthermore, it is also acceptable by the international standard has been regulated by 309 the Codex Alimentarius is not to exceed 50 meq/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

310 The sour taste of honey originated from the several organic and inorganic acids, where the dominant organic acid 311 present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase, which is added 312 by the bees when they convert a-nectar into honey, so that it can protect thea nectar until honey maturity. This 313 protectioning mechanism is caused by the inhibitiong of microorganisms' activity in honey (Da Silva et al. 2016). This 314 inhibit mechanism includes the combination of several factors, such as low moisture and the presence of hydrogen 315 peroxide, which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through 316 the destruction of the cell wall resulting in a change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 317 2018).

318 The total acidity total content in honey is a small quantity. Still, ,-but the presencet in honey is very important because 319 it_can influenceing the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity is 320 indicatesing the fermentation process had been occurrsed when some reducing sugar is brokeneak down into acetic acid. 321 Honey acidity content is related to the yeast number where they m is break down some reducing sugar into ethanol, and if 322 theit's reaction with the oxygen is formed, the acetic acid which is increasing the honey acidity. Therefore, the higher **Commented [Rev2]:** what is the meaning of this? If you compare two things, they should have the same unit.

-	Formatted: English (United States)
1	Formatted: English (United States)
	Formatted: English (United States)
$\left(\right)$	Formatted: English (United States)
$\langle \rangle$	Formatted: English (United States)
	Formatted: English (United States)

323 acidity values higher of acidity may be indicateing the sugars fermentation process of sugars-into organic acids. The 324 325 326 hHoney acidity is affected by several factors, such as different content of organic acids, different geographical origins, and the seasonal when honey is harvested (Da Silva et al. 2016; Tornuk et al. 2013). The honey acidity from the bee A. cerana in our study (Table 2) was-differed to from previously studied by Wu et al. (2020) for A. cerana cerana honey is 0.80 327 mol/kg, and Guerzou et al. (2021) in-ranging from 11 to 47 meq/kg for Algerian honey. Furthermore, it is differed from to 328 reported by Erwan et al. (2020) that honey acidity from the bee A. mellifera wasere produced by extrafloral nectar (sugar 329 330 palm and coconut saps) is ranging from 22.00 to 43.00 ml NaOH/kg. The different acidity has been reported previously with our studyied is affected by the different plant types as the nectar source to produce honey, honey pH, geographical 331 origin, and organic acids compoundin however in our study has not measured the organic acid compound and honey pH.

332 Honey production potency from the sugar palm and coconut saps

Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized 333 334 which can contributinge to communities' income. Generally, the main production from the coconut (Cocos nucifera L.) 335 was harvested as coconut fruit to advance the process into coconut oil and copra. These commodities have a high price, but 336 producing coconut oil and copra are high risk for the farmers because they are just preparing raw materials. Therefore, the 337 utilizing of the sap can be produced by the coconut and sugar palm were also potency feed for the bees was used as the 338 nectar source to produce honey. Sugar palm and coconut saps are the feed potential which is studied by Erwan et al. 339 (2021b) that the coconut and sugar palm saps can increase the number of honey cells and bee bread cells of the bee A. 340 cerana. Furthermore, it is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana. 341 such as increasing the brood cells number, colony weight, and the honey production (Erwan et al. 2022). In addition, the 342 saps from coconut and sugar palms are usually used by the farmers to produce sugar by-using a traditional process.

343 The coconut plants can produce 12 stalks in a year, and in-one stalk can produce sap of 90 liters, T thus, in-one coconut plant can produce 1,080 liters of sap. Furthermore, if the farmers have one hectare of the land which are planted by 100 344 345 coconut plants (distance $10 \text{ m} \times 10 \text{ m}$), so they can be produced for about 108,000 liters of coconut sap. To produce 1 kg 346 of honey requires coconut sap for about 7 liters, and in a year 84 liters are is required to produce 12 kg of honey. Thus, 347 honey potency in a year from 100 hectares of the land can be calculated as follows: 10,800,000 liters of sap divided by 84 348 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 349 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big 350 potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa 351 Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

352 Sugar palm plants can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapped not to 353 exceed 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant-is rangesing from 8 to 22 354 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). 355 Furthermore, if in one hectare of the plantation, we have 100 sugar palm plants, with the distance for plantinged is 10 m × 356 10 m, so can be obtained of sap for 115,000 liters.

357 The field investigation showed that to producinge 1 kg of honey from the sugar palm sap is required for about 10 liters. 358 and in a year, it is required for about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm 359 sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and 360 multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 361 tons/month in 100 hectares area. This potency indicates that the sugar palm sap has a big potency to produce honey which 362 is supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 363 364 tones, 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. Therefore, Hit can be concluded that honey is produced by the bee A. cerana from sugar palm and coconut saps as the feed have athe quality which that is are acceptable 365 366 by Indonesian national standard, and the international standard has been regulated by the Codex Alimentarius. Honey potency production from the coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 367 368 128.571 tons/month, while in sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

ACKNOWLEDGEMENTS

370 We thank to all beekeepers and farmers whoich are support and permitting our teams to conduct this study in North Duman Village, Lingsar Sub-district, West Lombok, Indonesia. 371

372

369

REFERENCES

373 374 375 376 Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159.

Agussalim, Agus A, Nurlivani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html

Commented [Rev3]: Please add the references for these data

Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta

Agussanni, Agus A, Onanni N, Dudisatria K05, 2016. Interpret of hype of noisylex forages in usine of eaken stema and Ngipar Oninnigkout Togyakara. Bul Peternak 42(1): 50-56. https://doi.org/10.2105/buletinpeternak.v4211.28294.
Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.2105/buletinpeternak.v4114.13593.
AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin

Franklin Station, Washington D.C. Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.

Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram. [Indonesian] Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis mellifera* with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci

Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482. Erwan, Franti; L-D-, Purnamasari; D-K-, Muhsinin; M-, Agussalim; A-, 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from

 Apis
 cerana
 from
 different
 regions
 in
 North
 Lombok
 Regency,
 Indonesia.
 J
 Trop
 Anim
 Prod
 22:
 35-41.

 https://doi.org/10.21776/ub.jtapro.2021.022.01.5
 Erwan, Muhsinin M, Agussalim.
 2021b.
 Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification.

Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.

uredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097. Escu

Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.

Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/https://doi.org/10.3390/resources10100094. Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI 10.1007/978-3-642-16422-4 3

Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on vo https://doi.org/10.1016/j.foodchem.2013.09.105. origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557.

Machado AM, Tomás A, Russo Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.

Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC complement Altern Med 13: 1-12. Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special

focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822. National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.

Pasias IN. Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and

Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.
Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.

Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (Apis cerana javana Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.

Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York. Supeno B, Etwan, Agussalim. 2021. Enhances production of coffee (*Coffee robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062.

Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.

Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.

Mahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.

Mu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225. Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food

Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.
 Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

Formatted: English (United States)

Formatted: Font: Italic

1

2

7

21

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,•}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram – 83125, Indonesia. Telp/Fax: +62370-633603/+62370-640592. *email: apiserwan@gmail.com

²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta – 55281, Indonesia

8 Abstract. One of the big problems when keeping honeybees is the limited of sustainable feed, especially in the rainy season. The 9 objectives of this study were to evaluate the honey quality from the bee A. cerana based on the chemical composition, and honey 10 potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee A. cerana was divided into six 11 treatments consistings of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar 12 palm sap of 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm 13 pollen; coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the A. 14 cerana were moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 15 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.35 ml NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1,542.857 tons/year and 1,150 tons/year, respectively. It can be 16 17 concluded that the quality of A. cerana honey, produced by the sugar palm and coconut saps, is acceptable by the Indonesian national 18 and international standards. The sugar palm and coconut saps have a big potential as the bee feed especially for the bee A. cerana.

19 Key words: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

20 **Running title:** Honey quality of *Apis cerana* produced by sugar palm and coconut saps

INTRODUCTION

22 The honeybee of A. cerana is one of the bees from the Apis genus which includes the local bee which is spread in some 23 regions in Indonesia, including Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram 24 (Radloff et al. 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by 25 beekeepers using traditional hives (for example using a coconut log hive) and semi-modern hives (box hives without nest frames) to produce honey. Furthermore, several regions have been practicing the beekeeping of the bee A. cerana has been 26 reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and 27 28 Lombok. However, the beekeeping of A. cerana is mostly using traditional hives or use box hives but is not completed by 29 the honey frame like the beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal jelly, and 30 propolis. However their production is lower compared to the bee A. mellifera (Agussalim and Agus 2022).

31 One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to 32 produce honey, bee bread, and royal jelly. The limitation feed is a very serious problem that has been faced by beekeepers 33 because they have no area used to plant several plants which are used as the feed source to produce the honeybees' products. Honeybee feeds are divided into two types, namely nectar and pollen, where nectar is obtained by the foragers 34 35 from the plant flowers (nectar floral) and nectar extrafloral, which is obtained by the foragers from stalk and leaf of plants 36 (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by using all body 37 parts and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting nectar and 38 pollen from the plant flowers, the foragers role as the pollinator agent by transporting pollen from the anther to pistil so 39 that the pollination process occurs. This process is continuously done by the foragers until their honey stomach is full of 40 nectar and their corbicula has been deposited by the pollen. This pollination impacts on the increasing the plants productivity (Pohorecka et al. 2014; Supeno et al. 2021). 41

One of the strategies to produce sustainable honey from the bee *A. cerana* is by using sap from the plants such as sugar palm and coconut. Several studies have been conducted by using sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed could enhance the production of honey cells and bee bread cells. However, the use of sap from coconut and sugar palm can increase the honey and bee bread cells compared to the control group without sap as the feed (mult-ifloral nectar). Furthermore, Erwan et al. (2022) also reported using sugar palm and coconut saps which are each added with sugar palm pollen can improve the bee A. cerana productivity, such as increasing honey production, brood cell number, and colony weight. In addition, another study showed that the use of extrafloral nectar namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed which is resulting the honey chemical composition (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national standard and the international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, studies about the chemical composition of honey from the bee A. cerana produced from the sugar palm sap, coconut sap, and their honey potency production from both sap sugar palm and coconut have vet to be studied. Therefore, the objectives of this study were to evaluate the honey quality based on the chemical composition of the bee A. cerana, honey potency produced by the coconut and sugar palm saps.

MATERIALS AND METHODS

58 Study area

This research has been conducted in the North Duman Village (8°32'10"S 116°09'32"E), Lingsar Sub-district, West Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty *A. cerana* colonies were divided into six treatments and every five colonies per treatment as the replication. The saps used in our study were obtained from the stalk of coconut (*Cocos nucifera* L.) and sugar palm (*Arenga pinnata*) and the pollen source from the sugar palm (Figure 1). The stalks of coconut and sugar palm were cut and then put in a plastic bottle which was used to store the sap secreted by their stalks. The treatments in our study were sugar palm sap without added by sugar palm pollen (SPO); coconut sap without added sugar palm pollen (CPO); coconut sap of 50% + sugar palm sap of 50% without added sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added sugar palm pollen (SCP1).

Figure 1. Coconut sap (left), sugar palm sap (center), and sugar palm pollen (right)

The technique was used to give sugar palm and coconut saps and sugar palm pollen (Figure 2) was according to the previous method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by ussing a plastic plate and split bamboo was completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo was placed one meter from the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place the colony to avoid the foragers collecting pollen and sap from the other treatments.

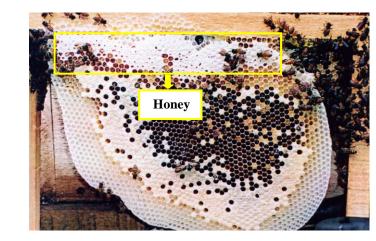


Figure 2. Technique to given the sugar palm and coconut saps (left) and sugar palm pollen (right) (Erwan et al. 2022, 2021b)

107 **Procedures**

108 Honey quality

109 Honey from the A. cerana (Figure 3) was harvested after beekeeping for three months using coconut and sugar palm 110 saps. Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the A. cerana was evaluated based on the chemical composition 111 consisting of moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The 112 moisture content was analyzed by using a proximate analysis based on the method from the Association of Official 113 114 Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed using a Layne-Enyon method and sucrose 115 content was analyzed by a Luff Schoorl method, described by AOAC (2005). Diastase enzyme activity, hydroxymethylfurfural (HMF), and free acidity were analyzed based on the harmonized methods of the international 116 117 honey commission (Machado et al. 2022).

134 **Figure 3.** Honey from *A. cerana* was produced from the sugar palm and coconut saps

135 Honey production from sugar palm and coconut saps

Sugar palm and coconut saps every ten liters were used to measure the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed on the plastic plate in front of the box hives at a distance of one meter. In addition, the honey production without using sugar palm and coconut saps was measured for one year of the beekeeping, which calculates the contribution of sugar palm and coconut saps in honey production. Honey from *A. cerana* was harvested with cut the honey cells (Figure 3) and squeezed to separate wax and honey. Afterward, honey was measured production by using a digital scale and stored in the refrigerator.

142 Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year and also based on dept interview with farmers, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare was calculated from the sap production per tree multiplied by the number of trees in a one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap, and then honey production was measured by cylinder glass

149 Data analysis

The data on honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using descriptive analysis (Steel et al. 1997).

152

RESULTS AND DISCUSSION

153 Moisture content of honey

Honey is composed of water as the second largest of honey constituents, ranging from 15 to 21 g/100 g, depending on the plant species as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is also affected by honey maturity level, processing postharvest, and storage conditions (Da Silva et al. 2016). The honey moisture affects the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the temperature and humidity depending on the season (rainy and dry seasons). Honey moisture can increase during postharvest processing such as storage conditions, because honey is hygroscopic that can absorb the moisture in the air (Da
 Silva et al. 2016; Karabagias et al. 2014).

A recent study showed that the honey moisture from the bee A. cerana, produced by sugar palm and coconut saps and 162 163 their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted by the Indonesian national standard (SNI), where the moisture for beekeeping honey, including the bee A. cerana and A. mellifera, does not 164 exceed 22% (National Standardization Agency of Indonesia 2018) and is higher compared to the international standard 165 166 which Codex Alimentarius regulated is not exceed 20% (Thrasyvoulou et al. 2018). The variation of honey moisture of the 167 bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm and coconut, however our study has not been measured. The higher moisture content requires a long time for ripening of honey, and the 168 169 bees start the process of decreasing honey moisture when they take nectar from plant flowers or saps as the raw material to 170 produce honey. Furthermore, a small portion of moisture content has been evaporated in the honey sack before being 171 transferred to the other bee which is working in the hive. This transfer is rapid depending on the temperature, colony 172 strength, and nectar availability (Da Silva et al. 2016).

173

174	Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee A. cerana
1/7	Table 1. The moisture, reducing sugar, and sucrose contents of noney from the bee A. ceruna

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0);
coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm
pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

180 The honey production process is started with the foragers collecting nectar from the plant flowers or extrafloral nectar 181 and then stored in the honey stomach. After that, the foragers will transfer the nectar that has been collected to the other 182 bees who are working to process the nectar into honey in their mouth, then put it in the honey stomach and then transfer it to other bees several times until honey is ripening. A considerable amount of water will be evaporated in this process, 183 which continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes 184 185 (Balasubramanyam 2021; Zhang et al. 2021). The honey moisture content in our study differed from Wang et al. (2021) 186 that honey moisture from the bee A. cerana which is collected from 42 different honeycombs from China ranges from 187 17.03 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana 188 from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) also reported that the 189 honey moisture produced by the A. mellifera bee by using sugar palm and coconut saps ranges from 19.34 to 20.94%. The different honey moisture content has been reported to be affected by the different geographical origins, impacts the 190 191 different plant types that can be grown in each region, different environmental conditions (temperature and humidity), and 192 also different bee species, which impact the different ability to evaporate water in the honey.

193 Reducing sugar and sucrose contents of honey

Sugars in honey are composed of monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

198 A recent study showed that the honey reducing sugar from the bee A. cerana was beekeeping by using sugar palm and 199 coconut saps, and their combination as the nectar source to produce honey ranges from 62.78 to 68.37 % (Table 1). This 200 honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1 but not acceptable for treatments 201 SCP0, and SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into simple 202 203 sugars. It is known that this enzyme is responsible for converting of sucrose into glucose and fructose. These sugars are 204 included in the reducing sugar group and the main component in honey. In the honey maturity process, the sucrose is break 205 down by the invertase enzyme into simple sugars simultaneously, and water will be evaporated to increase the reduced 206 sugar content. In addition, enzymes secreted by the worker bees can also break down the carbohydrate into simple sugars. 207 Furthermore, another enzyme in honey is the diastase enzyme that breaks down starch into simple sugars (Da Silva et al. 208 2016). The honey reducing sugar in our study (Table 1) differed from what was reported by Erwan et al. (2020), that honey 209 reducing sugar from the bee A. mellifera which was produced by extrafloral nectar (sugar palm and coconut saps) ranges 210 from 60.15 to 73.69%. The different reducing sugar may be affected by the different bee species, which impacts their ability to evaporate water in honey, especially when they convert the complex sugars into simple sugars and different 211 212 seasons when the study is related to temperature and humidity environmental.

213 The honey sucrose content from the bee A. cerana in our study ranges from 1.44 to 3.42% (Table 1) and acceptable by 214 SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 215 5% for blossom and honeydew honey (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study 216 originated from sugar palm and coconut saps. The low honey sucrose content in our study is caused by the honey 217 218 harvested in mature condition characterized by honey cells that have been covered by wax. Furthermore, the invertase 219 enzyme which is produced by the worker bees actively breaks down sucrose from saps into simple sugars. There are two 220 types of invertase enzymes that are produced by the worker bees, namely glucoinvertase which converts sucrose into glucose and fructoinvertase, which converts sucrose into fructose. These enzymes are mostly derived from the bee's 221 222 secretion and only a small portion from the nectar, while the honeydew from the insect's secretion mostly contains 223 invertase enzymes (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) differed from Erwan et al. 224 (2020), that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut 225 saps) is ranging from 4.21 to 4.40%%.

226 The honey sucrose content is a very important parameter to evaluate the maturity of honey to identify manipulation, 227 where the high levels may indicate adulterations by adding several sweeteners such as cane sugar or refined beet sugar. In addition, indicating the early harvest, where sucrose is not completely transformed into fructose and glucose, the bees feed 228 229 artificially for a prolonged time using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; Escuredo et al. 2013; 230 Tornuk et al. 2013). Honey is a sugar solution that is supersaturated and unstable so it's easy to crystallize. The honey crystallization is affected by the concentration of glucose, fructose, and water. Fructose is the dominant sugar present in 231 232 honey from A. mellifera was produced by several plants as the nectar source that workers use to produce honey such as 233 eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey was produced by 234 Brassica napus. Rape honey is higher in glucose and lower in fructose which impacts its rapid crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which impacts on the different 235 plant types that can grow in each region and impacts the different sugars content from the nectar, which is produced by the 236 237 nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; Escuredo et al. 2014; Tornuk 238 et al. 2013). Furthermore, the sugar content in honey is influenced by climate (season, temperature, and humidity), 239 processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013).

240 Diastase enzyme activity and hydroxymethylfurfural (HMF) of honey

241 A recent study showed that the diastase enzyme activity from the bee A. cerana honey produced by the sugar palm and coconut saps ranges from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with a minimum of 3 DN 242 for beekeeping honey including the bee A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018), 243 244 and also acceptable by the international standard has been regulated by Codex Alimentarius with the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is that it contains enzymes originating from the bees, pollen, 245 246 and nectar from plant flowers, but mostly enzymes are added by the bees when they are convert nectar into honey (Da 247 Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 2) differed from what 248 was reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was produced by 249 extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

Diastases are divided into α - and β -amylases, the natural enzymes present in honey. The α -amylase separates the starch chain randomly in the center to produce dextrin, while the β -amylase separates the maltose in the end chain. The nectar source influences diastase enzyme content in honey (floral and extrafloral nectars) to produce honey and honey geographical origins, which impacts the different chemical composition of the nectar can be produced by the plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species are also influencing the activity diastase because it's related to the distance, and the flowers plant numbers that can be visited by the foragers when they are collecting nectar and pollen used to produce honey and bee bread (Da Silva et al. 2016).

257 Generally, the diastase enzyme has the role of breaking down complex sugars into simple sugars. In addition, this 258 enzyme is role to digesting starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or 259 thermolabile. Thus, this condition can be used to evaluate the overheating and preservation degree of honey (Da Silva et al. 260 2016). Furthermore, diastase activity is also used to evaluate honey age related to storage time and temperature because the 261 diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed from Wu et al. 262 263 (2020) for multifloral honey produced by the A. cerana cerana from the Hainan province (China) was 6.70 Göthe. 264 Furthermore, it also differed from Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activities of honey from A. cerana were reported by 265 266 previous researchers are influenced by the different plant types as the nectar source to produce honey, different sugar 267 content, and different geographical origin.

Furthermore, the HMF of *A. cerana* honey produced by the sugar palm and coconut saps in our study ranges from 2.24 to 5.81 mg/kg (Table 2). This HMF indicates that honey from our study in fresh condition and acceptable by SNI for beekeeping honey, including from *A. cerana* and *A. mellifera*, not exceed 40 mg/kg (National Standardization Agency of Indonesia 2018) and also acceptable by the international standard regulated by Codex Alimentarius is not to exceed 40 272 mg/kg for blossom and honeydew honey (Thrasyvoulou et al. 2018). After harvesting, fresh honey generally contains a low HMF ranges from 0 to 4.12 mg/kg honey. Hydroxymethylfurfural is the result of the degradation of honey 273 monosaccharides, especially fructose and glucose, under acid conditions and accelerated by heating. This reaction produce 274 levulinic and formic acids (Da Silva et al. 2016). 275

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana Hydroxymethylfurfural Acidity (ml NaOH/kg) Diastase enzyme activity Treatments (DN) (mg/kg) SP0 7.57 5.78 36.33 CP0 5.17 5.04 26.00 SCP0 9.04 4.75 28.60 SP1 6.86 4.77 29.68 CP1 8.51 5.81 28.26 SCP1 6.85 2.2430.61

277

278 Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); 279 coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm 280 pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar 281 palm pollen (SCP1). 282

Hydroxymethyfurfural is formed after the honey is removed from the comb or when the wax cover is opened and the 283 284 advanced processing like heating process. The increase of the HMF content occurs in honey with the acidity and is 285 accelerated by the heating process. However, the HMF content is also influenced by sugars content, organic acids 286 presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In addition, HMF 287 can also be formed at low temperatures, acidic conditions, and sugar dehydration reactions. Therefore, the higher HMF content's impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The HMF of honey from the A. 288 cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for multifloral honey of A. cerana 289 290 cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China is 1.69 mg/kg. The 291 different HMF content of honey from A. cerana reported by previous researchers are influenced by the different plant 292 types as the nectar source to produce honey, different sugars content, and different geographical origin.

293 Acidity of honey

276

294 Free acidity is one of the important parameters to evaluate honey deterioration which is characterized by the presence 295 of the organic acids in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and 296 phosphates (Da Silva et al. 2016). This study showed that the honey acidity from A. cerana produced by the sugar palm 297 and coconut saps ranges from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of A. cerana honey in our study is 298 acceptable by SNI not to exceed 50 ml NaOH/kg for the beekeeping honey including A. cerana and A. mellifera. 299 Furthermore, it is also acceptable by the international standard has been regulated by the Codex Alimentarius is not to 300 exceed 50 meg/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

301 The sour taste of honey originated from several organic and inorganic acids, where the dominant organic acid present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase which is added by the 302 303 bees when they convert nectar into honey, so that it can protect the nectar until honey maturity. This protection mechanism 304 is caused by inhibiting of microorganisms activity in honey (Da Silva et al. 2016). This inhibit mechanism includes the 305 combination of several factors, such as low moisture and the presence of hydrogen peroxide which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of the cell wall 306 307 resulting in a change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 2018).

308 The total acidity content in honey is a small quantity. Still, the presence in honey is very important because it can 309 influence the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity indicates the 310 fermentation process occurrs when some reducing sugar is break down into acetic acid. Honey acidity content is related to the yeast number where they break down some reducing sugar into ethanol, and if the reaction with the oxygen is formed, 311 the acetic acid which is increasing the honey acidity. Therefore, the higher acidity values may indicate the sugars 312 313 fermentation process into organic acids. Honey acidity is affected by several factors such as different content of organic 314 acids, different geographical origins, and the season when honey is harvested (Da Silva et al. 2016; Tornuk et al. 2013). 315 The honey acidity from the bee A. cerana in our study (Table 2) differed from previous studied by Wu et al. (2020) for A. cerana cerana honey is 0.80 mol/kg and Guerzou et al. (2021) ranges from 11 to 47 meq/kg for Algerian honey. 316 Furthermore, it is differed from Erwan et al. (2020) that honey acidity from the bee A. mellifera was produced by 317 extrafloral nectar (sugar palm and coconut saps) ranges from 22.00 to 43.00 ml NaOH/kg. The different acidity reported 318 319 previously with our study is affected by the different plant types as the nectar source to produce honey, honey pH, 320 geographical origin, and organic acids compound; however our study has not measured the organic acid compound and 321 honey pH.

322 Honey production potency from the sugar palm and coconut saps

323 Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized contributing to communities' income. Generally, the main product from the coconut (Cocos nucifera L.) was harvested as 324 coconut fruit to advance the process into coconut oil and copra. These commodities have a high price, but producing 325 326 coconut oil and copra are high risk for the farmers because they are just preparing raw materials. Therefore, the utilizing of 327 the sap can be produced by the coconut and sugar palm were also potency feed for the bees was used as the nectar source 328 to produce honey. Sugar palm and coconut saps are the feed potential studied by Erwan et al. (2021b) that the coconut and 329 sugar palm saps can increase the number of honey and bee bread cells of the bee A. cerana. Furthermore, it is also reported 330 that sugar palm and coconut are improving the productivity of the bee A. cerana such as increasing the brood cells number, 331 colony weight, and honey production (Erwan et al. 2022). In addition, the saps from coconut and sugar palm are usually used by farmers to produce sugar using a traditional process. 332

333 The coconut plants can produce 12 stalks in a year, and one stalk can produce sap of 90 liters. Thus, one coconut plant can produce 1,080 liters of sap. Furthermore, if the farmers have one hectare of land planted by 100 coconut plants 334 (distance 10 m \times 10 m), so they can produce about 108,000 liters of coconut sap. To produce 1 kg of honey requires 335 coconut sap for about 7 liters and in a year 84 liters are required to produce 12 kg of honey. Thus, honey potency in a year 336 from 100 hectares of land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters of sap and multiplied 337 338 by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 128.571 tons/month in 100 339 hectares of the land. Based on the sap production showing that the coconut plants have a big potency to produce honey. 340 This potency was also supported by the harvest area of coconut in West Lombok (Nusa Tenggara Province, Indonesia) was 341 10,629.36 hectares (Department of Agricultural and Plantations 2021).

342 Sugar palm plants can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapped not to 343 exceed 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant ranges from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). 344 345 Furthermore, if in one hectare of the plantation we have 100 sugar palm plants, the distance for planting is $10 \text{ m} \times 10 \text{ m}$, so 346 can be obtained of sap for 115,000 liters.

347 The field investigation showed that producing 1 kg of honey from the sugar palm sap required about 10 liters and in a 348 year, it is required about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm sap in a year 349 from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and multiplied by 12 kg, 350 so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 tons/month in 100 hectares 351 area. This potency indicate that the sugar palm sap has a big potency to produce honey which is supported by the report 352 data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara Province, Indonesia) are 57.46 tones, 304.80 353 354 quintals/hectare, and 188.52, respectively, in the year of 2021. Therefore, it can be concluded that honey is produced by 355 the bee A. cerana from sugar palm and coconut saps as the feed have at quality that is acceptable by Indonesian national standard, and the international standard has been regulated by the Codex Alimentarius. Honey potency production from the 356 coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 128.571 tons/month, while 357 358 sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

359

ACKNOWLEDGEMENTS

360 We thank all beekeepers and farmers who support and permit our teams to conduct this study in North Duman Village, 361 Lingsar Sub-district, West Lombok, Indonesia.

362

REFERENCES

363 Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee Tetragonula laeviceps (Hymenoptera: Meliponinae). Biodiversitas 364 22: 5205-5210. https://doi.org/10.13057/biodiv/d221159. 365 366 367

Agussalim, Agus A. 2022. Production of honey, pot-pollen and propolis production from Indonesian stingless bee Tetragonula laeviceps and the physicochemical properties of honey: A review. Livest Res Rural Dev 34(8), Article #66. http://www.lrrd.org/lrrd34/8/3466alia.html.

Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, Tetragonula laeviceps, from different regions. Livest Res Rural Dev 31(6): Article #91. http://www.lrrd.org/lrrd31/6/aguss31091.html.

Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bul Peternak 42(1): 50-56. https://doi.org/10.21059/buletinpeternak.v42i1.28294.

Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41(4): 448-460. https://doi.org/10.21059/buletinpeternak.v41i4.13593.

AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.

Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in Apis Cerana Indica. Int J Biol Innov 03: 271-277. https://doi.org/10.46505/ijbi.2021.3204.

Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.

- 379 380 381 382 383 384 385 386 387 388 389 391 392 393 394 395 395 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
 - Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram. [Indonesian].
 - Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis mellifera* with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. https://doi.org/10.29303/jossed.v1i1.482.
 - Erwan, Franti, L.D., Purnamasari, D.K., Muhsinin, M., Agussalim, A., 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from Apis cerana from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. https://doi.org/10.21776/ub.jtapro.2021.022.01.5
 - Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
 - Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.
 - Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. https://doi.org/10.1016/j.foodchem.2013.10.097.
 - Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. https://doi.org/10.1016/j.foodchem.2012.11.015.
 - Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. https://doi.org/https://doi.org/10.3390/resources10100094.
 - Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (Eds.), Honeybees of Asia. Springer, New York, pp. 51-68. DOI 10.1007/978-3-642-16422-4_3.
 - Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. https://doi.org/10.1016/j.foodchem.2013.09.105.
 - Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Int 157: 111362. https://doi.org/10.1016/j.foodres.2022.111362.
 - Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. BMC Complement Altern Med 13: 1-12.
 - Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. https://doi.org/10.3390/antibiotics10070822.
 - National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.

Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. https://doi.org/10.1016/j.foodchem.2017.09.083.

- Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. https://doi.org/10.2478/JAS-2014-0027.
- Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. https://doi.org/10.1016/j.chroma.2012.11.064.
- Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (Eds.). Honeybees of Asia. Springer, New York. pp. 1-22. DOI 10.1007/978-3-642-16422-4_1.
- Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (*Apis cerana javana* Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. https://doi.org/10.1080/0005772x.2018.1564497.
- Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
- Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (*Coffea robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. https://doi.org/10.13057/biodiv/d221062.
- Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. https://doi.org/10.1080/00218839.2017.1411181.
- Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. https://doi.org/10.1016/j.indcrop.2012.12.042.
- Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
- Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. https://doi.org/10.1016/j.foodchem.2020.127774.
- Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT - Food Sci Technol 134: 110225. https://doi.org/10.1016/j.lwt.2020.110225.
- Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. https://doi.org/10.1016/j.fbio.2013.02.001.
- Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. https://doi.org/10.3390/foods10112882.

erwan apis <apiserwan@gmail.com>

[biodiv] Editor Decision

2 pesan

Smujo Editors <smujo.id@gmail.com> 2 Oktober 2022 pukul 13.21 Kepada: Erwan <apiserwan@gmail.com>, Agussalim <agussalim@mail.ugm.ac.id>

Erwan, Agussalim:

We have reached a decision regarding your submission to Biodiversitas Journal of Biological Diversity, "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps".

Our decision is: Revisions Required

Biodiversitas Journal of Biological Diversity

B-01-SEP-KDW.doc 1972K

erwan apis <apiserwan@gmail.com> Kepada: Smujo Editors <smujo.id@gmail.com> 2 Oktober 2022 pukul 13.33

Dear Editor in Chief Biodiversitas

Thanks very much for the information, but we inform you that in the attached file we can not found the comments for our paper because the attached file is the same with the revision file that has been uploaded in the Biodiversitas System. Can you help me explain or send the comments again for our paper ?

[Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

erwan apis <apiserwan@gmail.com>

[biodiv] Editor Decision

3 pesan

Ayu Astuti <smujo.id@gmail.com> 12 November 2022 pukul 07.14 Kepada: ERWAN <apiserwan@gmail.com>, AGUSSALIM <agussalim@mail.ugm.ac.id>

ERWAN, AGUSSALIM:

We have reached a decision regarding your submission to Biodiversitas Journal of Biological Diversity, "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps".

Our decision is to: Accept Submission

Biodiversitas Journal of Biological Diversity

erwan apis <apiserwan@gmail.com> Kepada: Ayu Astuti <smujo.id@gmail.com> 12 November 2022 pukul 19.44

Dear Editor in Chief Biodiversitas

Thanks very much for the information [Kutipan teks disembunyikan] --

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

erwan apis <apiserwan@gmail.com> Kepada: Ayu Astuti <smujo.id@gmail.com> 12 November 2022 pukul 19.57

Dear Editor in Chief Biodiversitas

We have been check the copyedited in the system and we found some mistake for example in Universitas Mataram should be University of Mataram, the references not have DOI, so DOI we have been deleted and the references are Agussalim, Agus A. 2022. Production of honey, pot-pollen and propolis production from Indonesian stingless bee *Tetragonula laeviceps* and the physicochemical properties of honey: A review. Livest Res Rural Dev 34 (8): 66. Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, *Tetragonula laeviceps*, from different regions. Livest Res Rural Dev 31 (6): 91.

Please find the correction in attached file [Kutipan teks disembunyikan]

■ 12166-Article Text-1066348-1-9-20221112.doc 1415K

erwan apis <apiserwan@gmail.com>

[biodiv] New notification from Biodiversitas Journal of Biological Diversity

5 pesan

DEWI NUR PRATIWI <smujo.id@gmail.com> Balas Ke: Ahmad Dwi Setyawan <editors@smujo.id> Kepada: Erwan <apiserwan@gmail.com> 9 November 2022 pukul 16.11

You have a new notification from Biodiversitas Journal of Biological Diversity:

You have been added to a discussion titled "Uncorrected Proof" regarding the submission "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps".

Link: https://smujo.id/biodiv/authorDashboard/submission/12166

Ahmad Dwi Setyawan

Biodiversitas Journal of Biological Diversity

DEWI NUR PRATIWI <smujo.id@gmail.com> Balas Ke: Ahmad Dwi Setyawan <editors@smujo.id> Kepada: Erwan <apiserwan@gmail.com> 9 November 2022 pukul 16.20

9 November 2022 pukul 16.24

You have a new notification from Biodiversitas Journal of Biological Diversity:

You have been added to a discussion titled "BILLING" regarding the submission "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps". [Kutipan teks disembunyikan]

erwan apis <apiserwan@gmail.com> Kepada: Ahmad Dwi Setyawan <editors@smujo.id>

Dear Editor In Chief Biodiversitas

Thanks very much for the information and we will check and revise if any correction [Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

erwan apis <apiserwan@gmail.com> Kepada: Ahmad Dwi Setyawan <editors@smujo.id>

10 November 2022 pukul 18.21

Dear Editor in Chief Biodiversitas

We have been making corrections for our paper and the green color as the mark of correct revision. Please find attached file for our correction.

[Kutipan teks disembunyikan]

12166-Article Text-1066146-1-18-20221109 (Proofread).doc 1714K

erwan apis <apiserwan@gmail.com> Kepada: Ahmad Dwi Setyawan <editors@smujo.id> 16 November 2022 pukul 13.05

Dear Editor in Chief Biodiversitas

We inform to you that our paper has been paid and please find the attached file payment transfer for our paper [Kutipan teks disembunyikan]

[Kutipan teks disembunyikan]

BAYAR BIODIVERSITAS ERWAN.pdf

BIODIVERSITAS Volume 23, Number 11, November 2022 Pages: 5854-5861

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,•}, AGUS SALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram 83125, West Nusa Tenggara, Indonesia. Tel.: +62-370-633603, Fax.: +62-370-640592, ***e**mail: apiserwan@gmail.com

²Faculty of Animal Science, Universitas Gadjah Mada. Jl. Fauna 3, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia

Manuscript received: 6 September 2022. Revision accepted: 9 November 2022.

Abstract. *Erwan, Agussalim. 2022. Honey quality from the bee* Apis cerana, *honey potency produced by coconut and sugar palm saps. Biodiversitas 23: 5854-5861.* One of the big problems when keeping honeybees is the limited sustainable feed, especially in the rainy season. The objectives of this study were to evaluate the honey quality from the bee *Apis cerana* based on the chemical composition and honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee *A. cerana* was divided into six treatments consisting of sugar palm sap without sugar palm pollen, coconut sap without sugar palm pollen, coconut sap of 50% + sugar palm sap of 50% without sugar palm pollen, sugar palm sap was added by sugar palm pollen; coconut sap was added by sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% + sugar palm sap of 50% was added by sugar palm pollen. The chemical composition of honey from the *A. cerana* was moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to 36.33 mL NaOH/kg). Honey potency produced by the coconut and sugar palm saps in 100 hectares area produces honey was 1542.857 tons/year and 1150 tons/ year, respectively. It can be concluded that the quality of *A. cerana* honey, produced by the sugar palm and coconut saps, is acceptable by the Indonesian national and international standards. The sugar palm and coconut saps have big potential as bee feed, especially for the bee *A. cerana*.

Keywords: Apis cerana, coconut, honey, sugar palm pollen

INTRODUCTION

The honeybee of Apis cerana is one of the bees from the Apis genus, which includes the local bee which is spread in some regions in Indonesia, including Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Hepburn and Radloff 2011; Radloff et al. 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by beekeepers using traditional hives (for example, using a coconut log hive) and semi-modern hives (box hives without nest frames) to produce honey. Furthermore, several regions have been practicing the beekeeping of the bee A. cerana, has been reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok. However, the beekeeping of A. cerana is mostly using traditional hives or use box hives but is not completed by the honey frame like the beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal jelly, and propolis. However, their production is lower compared to the bee A. mellifera (Schouten et al. 2019; Agussalim and Agus 2022).

One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to produce honey, bee bread, and royal jelly. The limitation of feed is a very serious problem that has been faced by beekeepers because they have no area used to plant several plants which are used as the feed source to produce the honeybees' products. Honeybee feeds are divided into two types, namely nectar and pollen, where nectar is obtained by the foragers from the plant flowers (nectar floral) and nectar extrafloral, which is obtained by the foragers from stalk and leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which are collected by using all body parts and then deposited in the corbicula (Agussalim et al. 2017, 2018; Erwan et al. 2021a). When collecting nectar and pollen from the plant flowers, the forager's role as the pollinator agent by transporting pollen from the anther to the pistil so that the pollination process occurs, this process is continuously done by the foragers until their honey stomach is full of nectar and their corbicula has been deposited by the pollen. This pollination impacts the increase of the plant's productivity (Pohorecka et al. 2014; Supeno et al. 2021).

One of the strategies to produce sustainable honey from the bee *A. cerana* is by using sap from the plants such as sugar palm and coconut. Several studies have been conducted by using sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed could enhance the production of honey cells and bee bread cells. However, using sap from coconut and sugar palms can increase the honey and bee bread cells compared to the control group without sap as the feed (multi-floral nectar). Furthermore, Erwan et al. (2022) also reported using sugar palm and coconut saps which are each added with sugar palm pollen, can improve the bee *A*.

cerana productivity, such as increasing honey production, brood cell number, and colony weight. In addition, another study showed that the use of extrafloral nectar namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera) saps as the A. mellifera bee feed which is resulting the honey chemical composition (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national standard and the international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, studies about the chemical composition of honey from the bee A. cerana produced from the sugar palm sap, coconut sap, and their honey potency production from both sap sugar palm and coconut have yet to be studied. Therefore, the objectives of this study were to evaluate the honey quality based on the chemical composition of the bee A. cerana honey potency produced by the coconut and sugar palm saps.

MATERIALS AND METHODS

Study area

This research has been conducted in the North Duman Village (8°32'10" S 116°09'32" E), Lingsar Sub-district, West Lombok, West Nusa Tenggara Province, Indonesia. In this research, we used thirty *A. cerana* colonies divided

into six treatments and every five colonies per treatment as the replication. The saps used in our study were obtained from the stalk of coconut (*Cocos nucifera*) and sugar palm (*Arenga pinnata*) and the pollen source from the sugar palm (Figure 1). The stalks of coconut and sugar palm were cut and then put in a plastic bottle which was used to store the sap secreted by their stalks. The treatments in our study were sugar palm sap without added by sugar palm pollen (SP0), coconut sap without added sugar palm pollen (CP0), coconut sap of 50% + sugar palm sap of 50% without added sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added sugar palm pollen (SCP1).

The technique used to give sugar palm and coconut saps and sugar palm pollen (Figure 2) was according to the previous method has been reported by Erwan et al. (2021b, 2022) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo was completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo was placed one meter from the box hives, while the sugar palm pollen was hung beside and above the box hives. The distance of 600 meters to place the colony to avoid the foragers collecting pollen and sap from the other treatments.

Figure 1. Coconut sap (left), sugar palm sap (center), and sugar palm pollen (right)

Figure 2. Technique to given the sugar palm and coconut saps (left) and sugar palm pollen (right) (Erwan et al. 2021b, 2022)

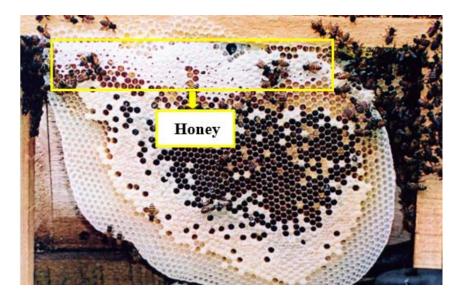


Figure 3. Honey from Apis cerana was produced from the sugar palm and coconut saps

Procedures

Honey quality

Honey from the A. cerana (Figure 3) was harvested after beekeeping for three months using coconut and sugar palm saps. Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the A. cerana was evaluated based on the chemical composition consisting of moisture, reducing sugar. sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from the Association of Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed using a Layne-Enyon method and sucrose content was analyzed by a Luff Schoorl method, described by AOAC (2005). Diastase enzyme activity, HMF, and free acidity were analyzed based on the harmonized methods of the international honey commission (Machado et al. 2022).

Honey production from sugar palm and coconut saps

Sugar palm and coconut saps every ten liters were used to measure the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed on the plastic plate in front of the box hives at a distance of one meter. In addition, the honey production without using sugar palm and coconut saps was measured for one year of beekeeping, which calculates the contribution of sugar palm and coconut saps in honey production. Honey from *A. cerana* was harvested with cut the honey cells (Figure 3) and squeezed to separate wax and honey. Afterward, honey was measured production by using a digital scale and stored in the refrigerator.

Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year and also based on dept interviews with farmers, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare was calculated from the sap production per tree multiplied by the number of trees in a one-hectare area. After three months of beekeeping, honey from both treatments, sugar palm and coconut saps, were harvested to measure the honey production from the use of ten litters sap, and then honey production was measured by cylinder glass

Data analysis

The data on honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using descriptive analysis (Steel et al. 1997).

RESULTS AND DISCUSSION

Moisture content of honey

Honey is composed of water as the second largest of honey constituents, ranging from 15 to 21g/100 g, depending on the plant species as the nectar source, which is affected by the botanical origin. Furthermore, honey moisture is also affected by honey maturity level, processing postharvest, and storage conditions (Da Silva et al. 2016). The honey moisture affects the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Escuredo et al. 2013; Da Silva et al. 2016). In addition, honey moisture is also affected by the temperature and humidity depending on the season (rainy and dry seasons). Honey moisture can increase during postharvest processing, such as storage conditions because honey is hygroscopic that can absorb the moisture in the air (Karabagias et al. 2014; Da Silva et al. 2016).

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee Apis cerana

Notes: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1)

A recent study showed that the honey moisture from the bee A. cerana, produced by sugar palm and coconut saps and their combination ranged from 20.76 to 21.80% (Table 1). This honey moisture content is accepted by the Indonesian national standard (SNI), where the moisture for beekeeping honey, including the bee A. cerana and A. mellifera, does not exceed 22% (National Standardization Agency of Indonesia 2018) and is higher compared to the international standard which Codex Alimentarius regulated is not exceeded 20% (Thrasvvoulou et al. 2018). The variation of honey moisture of the bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm and coconut, however, our study has not been measured. The higher moisture content requires a long time for the ripening of honey, and the bees start the process of decreasing honey moisture when they take nectar from plant flowers or saps as the raw material to produce honey. Furthermore, a small portion of moisture content has been evaporated in the honey sack before being transferred to the other bee, which is working in the hive. This transfer is rapid depending on the temperature, colony strength, and nectar availability (Da Silva et al. 2016).

The honey production process is started with the foragers collecting nectar from the plant flowers or extrafloral nectar and then stored in the honey stomach. After that, the foragers will transfer the nectar that has been collected to the other bees who are working to process the nectar into honey in their mouth, then put it in the honey stomach and then transfer it to other bees several times until honey is ripening. A considerable amount of water will be evaporated in this process, which continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes (Balasubramanyam 2021; Zhang et al. 2021). The honey moisture content in our study differed from Wang et al. (2021), that honey moisture from the bee A. cerana, which is collected from 42 different honeycombs from China, ranges from 17.03 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) also reported that the honey moisture produced by the A. mellifera bee by using sugar palm and coconut saps ranges from 19.34 to 20.94%. The different honey moisture content has been reported to be affected by the different geographical origins, impacts the different plant types that can be grown in each region, different environmental conditions (temperature and humidity), and also different bee species, which impact the different ability to evaporate water in the honey.

Reducing sugar and sucrose contents of honey

Sugars in honey are composed of monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

A recent study showed that the honey-reducing sugar from the bee A. cerana was beekeeping by using sugar palm and coconut saps, and their combination as the nectar source to produce honey ranges from 62.78 to 68.37% (Table 1). This honey-reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1 but not acceptable for treatments SCP0, and SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that changes the sap sucrose into simple sugars. It is known that this enzyme is responsible for converting sucrose into glucose and fructose. These sugars are included in the reducing sugar group and the main component in honey. In the honey maturity process, the sucrose is broken down by the invertase enzyme into simple sugars simultaneously, and water will be evaporated to increase the reduced sugar content. In addition, enzymes secreted by the worker bees can also break down the carbohydrate into simple sugars. Furthermore, another enzyme in honey is the diastase enzyme that breaks down starch into simple sugars (Da Silva et al. 2016). The honey-reducing sugar in our study (Table 1) differed from what was reported by Erwan et al. (2020), that honey-reducing sugar from the bee A. mellifera which was produced by extrafloral nectar (sugar palm and coconut saps) ranges from 60.15 to 73.69%. The different reducing sugar may be affected by the different bee species, which impacts their ability to evaporate water in honey, especially when they convert the complex sugars

into simple sugars and different seasons when the study is related to temperature and humidity environmental.

The honey sucrose content from the bee A. cerana in our study ranges from 1.44 to 3.42% (Table 1) and acceptable by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the international standard has been regulated by Codex Alimentarius is not exceed 5% for blossom and honeydew honey (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study originated from sugar palm and coconut saps. The low honey sucrose content in our study is caused by the honey harvested in a mature condition characterized by honey cells that have been covered by wax. Furthermore, the invertase enzyme which is produced by the worker bees actively breaks down sucrose from saps into simple sugars. There are two types of invertase enzymes that are produced by the worker bees, namely glucoinvertase, which converts sucrose into glucose and fructoinvertase, which converts sucrose into fructose. These enzymes are mostly derived from the bee's secretion and only a small portion from the nectar, while the honeydew from the insect's secretion mostly contains invertase enzymes (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) differed from Erwan et al. (2020), that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) ranging from 4.21 to 4.40%.

The honey sucrose content is a very important parameter to evaluate the maturity of honey to identify manipulation, where the high levels may indicate adulterations by adding several sweeteners such as cane sugar or refined beet sugar. In addition, indicating the early harvest, where sucrose is not completely transformed into fructose and glucose, the bees feed artificially for a prolonged time using a sucrose syrup (Escuredo et al. 2013; Puscas et al. 2013; Tornuk et al. 2013; Da Silva et al. 2016). Honey is a sugar solution that is supersaturated and unstable, so it's easy to crystallize. The honey crystallization is affected by the concentration of glucose, fructose, and water. Fructose is the dominant sugar present in honey from A. mellifera was produced by several plants as the nectar source that workers use to produce honey, such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey was produced by Brassica napus. Rape honey is higher in glucose and lowers in fructose which impacts its rapid crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins, which impacts the different plant types that can grow in each region and impacts the different sugars content from the nectar, which is produced by the nectary gland of plant flowers (Tornuk et al. 2013; Escuredo et al. 2014; Da Silva et al. 2016; Agussalim et al. 2019; Agus et al. 2021). Furthermore, the sugar content in honey is influenced by climate (season, temperature, and humidity), processing (heating process), and storage time (Tornuk et al. 2013; Escuredo et al. 2014; Da Silva et al. 2016).

Diastase enzyme activity and hydroxymethylfurfural (HMF) of honey

A recent study showed that the diastase enzyme activity from the bee A. cerana honey produced by the sugar palm and coconut saps ranges from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with a minimum of 3 DN for beekeeping honey, including the bee A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018), and also acceptable by the international standard has been regulated by Codex Alimentarius with the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is that it contains enzymes originating from the bees, pollen, and nectar from plant flowers, but mostly enzymes are added by the bees when they convert nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 2) differed from what was reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

Diastases are divided into α - and β -amylases, the natural enzymes present in honey. The α -amylase separates the starch chain randomly in the center to produce dextrin, while the β -amylase separates the maltose in the end chain. The nectar source influences diastase enzyme content in honey (floral and extrafloral nectars) to produce honey and honey geographical origins, which impacts the different chemical compositions of the nectar that can be produced by the plants, which impacts the honey chemical composition, especially diastase enzyme activity. In addition, the bee species are also influencing the activity diastase because it's related to the distance and the flowers plant numbers that can be visited by the foragers when they are collecting nectar and pollen used to produce honey and bee bread (Da Silva et al. 2016).

Generally, the diastase enzyme has the role of breaking down complex sugars into simple sugars. In addition, this enzyme is a role in digesting starch into maltose (disaccharide) and maltotriose (trisaccharide), which are sensitive to heat or thermolabile. Thus, this condition can be used to evaluate the overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, diastase activity is also used to evaluate honey age-related to storage time and temperature because the diastase activity may be reduced when heating above 60°C and longtime storage (Yücel and Sultanoğlu 2013; Da Silva et al. 2016). The honey diastase activity from the bee A. cerana in our study (Table 2) differed from Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from the Hainan province (China) was 6.70 Göthe. Furthermore, it also differed from Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling Mountains (China) ranged from 22.05 to 35.67 Göthe. The different diastase activities of honey from A. cerana were reported by previous researchers and are influenced by the different plant types as the nectar source to produce honey, different sugar content, and different geographical origin.

Furthermore, the HMF of *A. cerana* honey produced by the sugar palm and coconut saps in our study ranges from

2.24 to 5.81 mg/kg (Table 2). This HMF indicates that honey from our study in fresh condition and acceptable by SNI for beekeeping honey, including from A. cerana and A. mellifera, does not exceed 40 mg/kg (National Standardization Agency of Indonesia 2018) and is also acceptable by the international standard regulated by Codex Alimentarius is not to exceed 40 mg/kg for blossom and honeydew honey (Thrasyvoulou et al. 2018). After harvesting, fresh honey generally contains a low HMF ranging from 0 to 4.12 mg/kg honev. Hydroxymethylfurfural is the result of the degradation of honey monosaccharides, especially fructose and glucose, under acid conditions and accelerated by heating. This reaction produces levulinic and formic acids (Da Silva et al. 2016).

Hydroxymethylfurfural is formed after the honey is removed from the comb or when the wax cover is opened and the advanced processing like heating process. The increase of the HMF content occurs in honey with acidity and is accelerated by the heating process. However, the HMF content is also influenced by sugar content, organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In addition, HMF can also be formed at low temperatures, acidic conditions, and sugar dehydration reactions. Therefore, the higher HMF content's impact on the honey color is darker (Tornuk et al. 2013; Da Silva et al. 2016). The HMF of honey from the A. cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana reported by previous researchers are influenced by the different plant types as the nectar source to produce honey, different sugar content, and different geographical origin.

Acidity of honey

Free acidity is one of the important parameters to evaluate honey deterioration which is characterized by the presence of the organic acids in equilibrium with internal esters, lactone, and several inorganic ions such as sulfates, chlorides, and phosphates (Da Silva et al. 2016). This study showed that the honey acidity from *A. cerana* produced by the sugar palm and coconut saps ranges from 26.00 to 36.33 mL NaOH/kg (Table 2). The acidity of *A. cerana* honey in our study is acceptable by SNI not to exceed 50 mL NaOH/kg for the beekeeping honey, including *A. cerana* and *A. mellifera*. Furthermore, it is also acceptable by the international standard has been regulated by the Codex Alimentarius is not to exceed 50 meq/kg for blossom and honeydew honey (Thrasyvoulou et al. 2018).

The sour taste of honey originated from several organic and inorganic acids, where the dominant organic acid present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase, which is added by the bees when they convert nectar into honey so that it can protect the nectar until honey maturity. This protection mechanism is caused by inhibiting of microorganisms' activity in honey (Da Silva et al. 2016). This inhibit mechanism includes the combination of several factors, such as low moisture and the presence of hydrogen peroxide, which is produced by the enzyme glucoseoxidase can inhibit the metabolism activity in the microbe cell through the destruction of the cell wall resulting in a change in cytoplasmic membrane permeability (Pasias et al. 2018; Nainu et al. 2021).

The total acidity content in honey is a small quantity. Still, the presence of honey is very important because it can influence the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity indicates the fermentation process occurs when some reducing sugar is broken down into acetic acid. Honey acidity content is related to the yeast number where they break down some reducing sugar into ethanol, and if the reaction with the oxygen is formed, the acetic acid which is increasing the honey acidity. Therefore, the higher acidity values may indicate the sugars fermentation process into organic acids. Honey acidity is affected by several factors, such as different content of organic acids, different geographical origins, and the season when honey is harvested (Tornuk et al. 2013; Da Silva et al. 2016). The honey acidity from the bee A. cerana in our study (Table 2) differed from previous studied by Wu et al. (2020) for A. cerana cerana honey is 0.80 mol/kg, and Guerzou et al. (2021) ranges from 11 to 47 meq/kg for Algerian honey. Furthermore, it differed from Erwan et al. (2020) that honey acidity from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) ranging from 22.00 to 43.00 mL NaOH/kg. The different acidity reported previously with our study is affected by the different plant types as the nectar source to produce honey, honey pH, geographical origin, and organic acids compound; however, our study has not measured the organic acid compound and honey pH.

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee Apis cerana

Treatments	Diastase enzyme activity (DN)	Hydroxymethylfurfural (mg/kg)	Acidity (mL NaOH/kg)
SP0	7.57	5.78	36.33
CP0	5.17	5.04	26.00
SCP0	9.04	4.75	28.60
SP1	6.86	4.77	29.68
CP1	8.51	5.81	28.26
SCP1	6.85	2.24	30.61

Notes: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1)

Honey production potency from the sugar palm and coconut saps

Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized, contributing to communities' income. Generally, the main product from the coconut (Cocos nucifera) was harvested as coconut fruit to advance the process into coconut oil and copra. These commodities have a high price but producing coconut oil and copra are high risk for the farmers because they are just preparing raw materials. Therefore, the utilizing of the sap can be produced by the coconut and sugar palm was also potency feed for the bees was used as the nectar source to produce honey. Sugar palm and coconut saps are the feed potential studied by Erwan et al. (2021b) that the coconut and sugar palm saps can increase the number of honey and bee bread cells of the bee A. cerana. Furthermore, it is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana, such as increasing the number of brood cells number, colony weight, and honey production (Erwan et al. 2022). In addition, the saps from coconut and sugar palms are usually used by farmers to produce sugar using a traditional process.

The coconut plants can produce 12 stalks in a year, and one stalk can produce sap of 90 liters. Thus, one coconut plant can produce 1080 liters of sap. Furthermore, if the farmers have one hectare of land planted by 100 coconut plants (distance 10×10 m), so they can produce about 108,000 liters of coconut sap. To produce 1 kg of honey requires coconut sap for about 7 liters and in a year, 84 liters are required to produce 12 kg of honey. Thus, honey potency in a year from 100 hectares of land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1542.857 tons/year) or equivalent with 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

Sugar palm plants can be tapped to collect sap for about 5 to 6 months in one stalk but generally can be tapped not to exceed 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant ranges from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1500 liters/plant/year (average is 1150 liters/plant/year). Furthermore, if in one hectare of the plantation we have 100 sugar palm plants, the distance for planting is 10×10 m, so can be obtained of sap for 115,000 liters.

The field investigation showed that producing 1 kg of honey from the sugar palm sap required about 10 liters and, in a year, it required about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and multiplied by 12 kg, so obtained 1,150,000 kg of honey per year (1150 tons of honey) or equivalent with 95.833 tons/month in 100 hectares area. This potency indicates that the sugar palm sap has a big potency to produce honey which is supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara 57.46 Province. Indonesia) are tones. 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. Therefore, it can be concluded that honey is produced by the bee A. cerana from sugar palm and coconut saps as the feed have at a quality that is acceptable by Indonesian national standards, and the international standard has been regulated by the Codex Alimentarius. Honey potency production from the coconut sap in 100 hectares area can produce honey of 1542.857 tons/year or equivalent with 128.571 tons/month, while sugar palm can produce honey of 1150 tons/year or equivalent with 95.833 tons/month.

ACKNOWLEDGEMENTS

We thank all beekeepers and farmers who support and permit our teams to conduct this study in North Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

REFERENCES

- Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee *Tetragonula laeviceps* (Hymenoptera: Meliponinae). Biodiversitas 22: 5205-5210. DOI: 10.13057/biodiv/d221159.
- Agussalim, Agus A. 2022. Production of honey, pot-pollen and propolis production from Indonesian stingless bee *Tetragonula laeviceps* and the physicochemical properties of honey: A review. Livest Res Rural Dev 34 (8): 66.
- Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, *Tetragonula laeviceps*, from different regions. Livest Res Rural Dev 31 (6): 91.
- Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bull Anim Sci 42 (1): 50-56. DOI: 10.21059/buletinpeternak.v42i1.28294.
- Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bull Anim Sci 41 (4): 448-460. DOI: 10.21059/buletinpeternak.v41i4.13593.
- AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington DC.
- Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in *Apis cerana indica*. Intl J Biol Innov 3: 271-277. DOI: 10.46505/ijbi.2021.3204.
- Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. DOI: 10.1016/j.foodchem.2015.09.051.
- Department of Agricultural and Plantations. 2021. Rekapitulasi Produksi, Luas Panen, dan Produktivitas Aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram. [Indonesian]
- Erwan E, Harun M, Muhsinin M. 2020. The honey quality of Apis mellifera with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. DOI: 10.29303/jossed.v1i1.482.
- Erwan, Franti LD, Purnamasari DK, Muhsinin M, Agussalim A. 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from *Apis cerana* from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. DOI: 10.21776/ub.jtapro.2021.022.01.5.

- Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: 121.
- Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: 25.
- Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. DOI: 10.1016/j.foodchem.2013.10.097.
- Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. DOI: 10.1016/j.foodchem.2012.11.015.
- Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. DOI: 10.3390/resources10100094.
- Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (eds). Honeybees of Asia. Springer, New York.
- Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. DOI: 10.1016/j.foodchem.2013.09.105.
- Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça MM, Cristina FA. 2022. Quality assessment of Portuguese monofloral honeys: Physicochemical parameters as tools in botanical source differentiation. Food Res Intl 157: 111362. DOI: 10.1016/j.foodres.2022.111362.
- Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. BMC Complement Altern Med 13: 43. DOI: 10.1186/1472-6882-13-43.
- Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. DOI: 10.3390/antibiotics10070822.
- National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta. [Indonesia]
- Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. DOI: 10.1016/j.foodchem.2017.09.083.
- Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and

the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. DOI: 10.2478/JAS-2014-0027.

- Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. DOI: 10.1016/j.chroma.2012.11.064.
- Radloff SE, Hepburn HR, Engel MS. 2011. The Asian species of Apis. In: Hepburn HR, Radloff SE (eds). Honeybees of Asia. Springer, New York.
- Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (*Apis cerana javana* Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. DOI: 10.1080/0005772x.2018.1564497.
- Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
- Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (*Coffea robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. DOI: 10.13057/biodiv/d221062.
- Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. DOI: 10.1080/00218839.2017.1411181.
- Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. DOI: 10.1016/j.indcrop.2012.12.042.
- Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
- Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. DOI: 10.1016/j.foodchem.2020.127774.
- Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by *Apis* cerana cerana, Apis dorsata and Lepidotrigona flavibasis. LWT -Food Sci Technol 134: 110225. DOI: 10.1016/j.lwt.2020.110225.
- Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. DOI: 10.1016/j.fbio.2013.02.001.
- Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. DOI: 10.3390/foods10112882.

BIODIVERSITAS Volume 23, Number 11, November 2022 Pages: xxxx

Honey quality from the bee *Apis cerana*, honey potency produced by coconut and sugar palm saps

ERWAN^{1,•}, AGUSSALIM²

¹Faculty of Animal Science, University of Mataram. Jl. Majapahit No. 62, Mataram-83125, Indonesia. Tel./fax. +62370-633603/+62370-640592, *email: apiserwan@gmail.com
²Faculty of Animal Science, Universitas Gadjah Mada, Jl. Fauna 3, Bulaksumur, Yogyakarta-55281, Indonesia

Manuscript received: xxx 2022. Revision accepted: xxx November 2022.

Abstract. *Erwan, Agussalim.* 2022. Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps. Biodiversitas 23: xxxx. One of the big problems when keeping honeybees is the limited of sustainable feed, especially in the rainy season. The objectives of this study were to evaluate the honey quality from the bee *A. cerana* based on the chemical composition, and honey potency produced by the coconut and sugar palm saps. This study using thirty colonies of the bee *A. cerana* was divided into six treatments consisting of sugar palm sap without sugar palm pollen; coconut sap without sugar palm pollen; coconut sap of 50% + sugar palm sap of 50% without sugar palm pollen; sugar palm sap was added by sugar palm pollen. The chemical composition of honey from the *A. cerana* were moisture (20.76 to 21.80%), reducing sugar (62.78 to 68.37%), sucrose (1.44 to 3.42%), diastase enzyme activity (5.17 to 9.04 DN), hydroxymethylfurfural (2.24 to 5.81 mg/kg), and acidity (26.00 to **36.33** ml NaOH/kg). Honey potency produced by the coconut and sugar palm and coconut saps, is acceptable by the Indonesian national and international standards. The sugar palm and coconut saps have a big potential as the bee feed especially for the bee *A. cerana*.

Keywords: Arenga pinnata, beekeeping, Cocos nucifera L., extrafloral nectar, multifloral nectar

INTRODUCTION

The honeybee of A. cerana is one of the bees from the Apis genus which includes the local bee which is spread in some regions in Indonesia, including Kalimantan, Sumatera, Java, Bali, Lombok, Sumbawa, Sulawesi, Papua, and Seram (Radloff et al. 2011; Hepburn and Radloff 2011). In Indonesia, beekeeping of the bee A. cerana has been practiced by beekeepers using traditional hives (for example using a coconut log hive) and semi-modern hives (box hives without nest frames) to produce honey. Furthermore, several regions have been practicing the beekeeping of the bee A. cerana has been reported by Schouten et al. (2019) are Riau, North Sumatera, Lampung, Banten, Java, Yogyakarta region, Bali, and Lombok. However, the beekeeping of A. cerana is mostly using traditional hives or use box hives but is not completed by the honey frame like the beekeeping of A. mellifera. The bee A. cerana can produce honey, bee bread, royal jelly, and propolis. However, their production is lower compared to the bee A. mellifera (Agussalim and Agus 2022; Schouten et al. 2019).

One of the problems faced by the beekeepers in Indonesia is the limited of feed sustainability as the raw material to produce honey, bee bread, and royal jelly. The limitation feed is a very serious problem that has been faced by beekeepers because they have no area used to plant several plants which are used as the feed source to produce the honeybees' products. Honeybee feeds are divided into two types, namely nectar and pollen, where nectar is obtained by the foragers from the plant flowers (nectar floral) and nectar extrafloral, which is obtained by the foragers from stalk and leaf of plants (Agussalim et al. 2018, 2017). Pollen is obtained by the foragers from plant flowers which is collected by using all body parts and then deposited in the corbicula (Agussalim et al. 2018, 2017; Erwan et al. 2021a). When collecting nectar and pollen from the plant flowers, the foragers role as the pollinator agent by transporting pollen from the anther to pistil so that the pollination process occurs. This process is continuously done by the foragers until their honey stomach is full of nectar and their corbicula has been deposited by the pollen. This pollination impacts on the increasing the plants productivity (Pohorecka et al. 2014; Supeno et al. 2021).

One of the strategies to produce sustainable honey from the bee *A. cerana* is by using sap from the plants such as sugar palm and coconut. Several studies have been conducted by using sugar palm and coconut saps as the *A. cerana* feed. Erwan et al. (2021b) reported that the feed combination of coconut sap and sugar palm pollen as the *A. cerana* feed could enhance the production of honey cells and bee bread cells. However, the use of sap from coconut and sugar palm can increase the honey and bee bread cells compared to the control group without sap as the feed (multi-floral nectar). Furthermore, Erwan et al. (2022) also reported using sugar palm and coconut saps which are each added with sugar palm pollen can improve the bee *A. cerana* productivity, such as increasing honey production, brood cell number, and colony weight. In addition, another study showed that the use of extrafloral nectar namely sugar palm (Arenga pinnata) and coconut (Cocos nucifera L.) saps as the A. mellifera bee feed which is resulting the honey chemical composition (reducing sugar, sucrose, acidity, moisture, and diastase enzyme activity) which are acceptable by Indonesian national standard and the international standard has been regulated by Codex Alimentarius (Erwan et al. 2020). However, studies about the chemical composition of honey from the bee A. cerana produced from the sugar palm sap, coconut sap, and their honey potency production from both sap sugar palm and coconut have yet to be studied. Therefore, the objectives of this study were to evaluate the honey quality based on the chemical composition of the bee A. cerana, honey potency produced by the coconut and sugar palm saps.

MATERIALS AND METHODS

Study area

This research has been conducted in the North Duman Village (8°32'10" S 116°09'32" E), Lingsar Sub-district, West Lombok (West Nusa Tenggara Province, Indonesia). In this research, we used thirty *A. cerana* colonies were divided into six treatments and every five colonies per treatment as the replication. The saps used in our study

were obtained from the stalk of coconut (*Cocos nucifera* L.) and sugar palm (*Arenga pinnata*) and the pollen source from the sugar palm (Figure 1). The stalks of coconut and sugar palm were cut and then put in a plastic bottle which was used to store the sap secreted by their stalks. The treatments in our study were sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added sugar palm pollen (SP1); coconut sap of 50% + sugar palm pollen (SP1); coconut sap of 50% + sugar palm sap of 50% was added sugar palm pollen (SP1); coconut sap of 50% + sugar palm sap of 50% was added sugar palm pollen (SP1).

The technique was used to give sugar palm and coconut saps and sugar palm pollen (Figure 2) was according to the previous method has been reported by Erwan et al. (2022, 2021b) briefly as follows: fresh coconut and sugar palm saps were given to the bee *A. cerana* by using a plastic plate and split bamboo was completed by 4 to 5 twigs for foragers perch. The plastic plate and split bamboo was placed one meter from the box hives, while the sugar palm pollen was hung besides and above of the box hives. The distance of 600 meters to place the colony to avoid the foragers collecting pollen and sap from the other treatments.

Figure 1. Coconut sap (left), sugar palm sap (center), and sugar palm pollen (right)

Figure 2. Technique to given the sugar palm and coconut saps (left) and sugar palm pollen (right) (Erwan et al. 2022, 2021b)

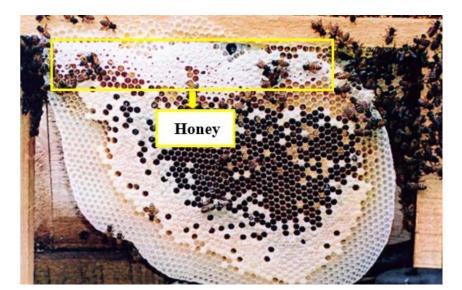


Figure 3. Honey from A. cerana was produced from the sugar palm and coconut saps

Procedures

Honey quality

Honey from the A. cerana (Figure 3) was harvested after beekeeping for three months using coconut and sugar palm saps. Honey from the five hives in one treatment group was composited into one honey sample and then used to analysis of their chemical composition. Honey quality from the A. cerana was evaluated based on the chemical composition consisting of moisture, reducing sugar, sucrose, diastase enzyme activity, hydroxymethylfurfural (HMF), and acidity. The moisture content was analyzed by using a proximate analysis based on the method from the Association of Official Agricultural Chemists (AOAC) (AOAC 2005). Reducing sugar was analyzed using a Layne-Enyon method and sucrose content was analyzed by a Luff Schoorl method, described by AOAC (2005). Diastase enzyme activity, HMF, and free acidity were analyzed based on the harmonized methods of the international honey commission (Machado et al. 2022).

Honey production from sugar palm and coconut saps

Sugar palm and coconut saps every ten liters were used to measure the honey production from the bee *A. cerana* for three months of beekeeping. The sugar palm and coconut saps were placed on the plastic plate in front of the box hives at a distance of one meter. In addition, the honey production without using sugar palm and coconut saps was measured for one year of the beekeeping, which calculates the contribution of sugar palm and coconut saps in honey production. Honey from *A. cerana* was harvested with cut the honey cells (Figure 3) and squeezed to separate wax and honey. Afterward, honey was measured production by using a digital scale and stored in the refrigerator.

Production of saps from coconut and sugar palm

The production of sap from coconut was measured for a year and also based on dept interview with farmers, while the sugar palm sap based on the previously studied was used to calculate the production per hectare area and was also obtained from the deep interview with the farmers. The production of coconut and sugar palm saps per hectare was calculated from the sap production per tree multiplied by the number of trees in a one hectare area. After three months of beekeeping, honey from both treatments sugar palm and coconut saps were harvested to measure the honey production from the use of ten litters sap, and then honey production was measured by cylinder glass

Data analysis

The data on honey quality, production potency of honey from sugar palm and coconut saps, honey production, and production of saps were analyzed by using descriptive analysis (Steel et al. 1997).

RESULTS AND DISCUSSION

Moisture content of honey

Honey is composed of water as the second largest of honey constituents, ranging from 15 to 21 g/100 g, depending on the plant species as the nectar source which is affected by the botanical origin. Furthermore, honey moisture is also affected by honey maturity level, processing postharvest, and storage conditions (Da Silva et al. 2016). The honey moisture affects the physical properties such as crystallization, viscosity, flavor, color, taste, solubility, specific gravity, and conservation (Da Silva et al. 2016; Escuredo et al. 2013). In addition, honey moisture is also affected by the temperature and humidity depending on the season (rainy and dry seasons). Honey moisture can increase during postharvest processing such as storage conditions, because honey is hygroscopic that can absorb the moisture in the air (Da Silva et al. 2016; Karabagias et al. 2014).

BIODIVERSITAS

Volume 23, Number 11, November 2022 Pages: xxxx

Table 1. The moisture, reducing sugar, and sucrose contents of honey from the bee A. cerana

Treatments	Moisture (%)	Reducing sugar (%)	Sucrose (%)
SP0	21.60	65.24	2.86
CP0	20.76	68.37	1.96
SCP0	21.40	64.55	2.51
SP1	21.80	62.78	3.42
CP1	21.58	65.37	1.72
SCP1	20.98	67.33	1.44

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

A recent study showed that the honey moisture from the bee A. cerana, produced by sugar palm and coconut saps and their combination was ranging from 20.76 to 21.80% (Table 1). This honey moisture content is accepted by the Indonesian national standard (SNI), where the moisture for beekeeping honey, including the bee A. cerana and A. mellifera, does not exceed 22% (National Standardization Agency of Indonesia 2018) and is higher compared to the international standard which Codex Alimentarius regulated is not exceed 20% (Thrasyvoulou et al. 2018). The variation of honey moisture of the bee A. cerana in our study may be caused by the different moisture content of both saps from sugar palm and coconut, however our study has not been measured. The higher moisture content requires a long time for ripening of honey, and the bees start the process of decreasing honey moisture when they take nectar from plant flowers or saps as the raw material to produce honey. Furthermore, a small portion of moisture content has been evaporated in the honey sack before being transferred to the other bee which is working in the hive. This transfer is rapid depending on the temperature, colony strength, and nectar availability (Da Silva et al. 2016).

The honey production process is started with the foragers collecting nectar from the plant flowers or extrafloral nectar and then stored in the honey stomach. After that, the foragers will transfer the nectar that has been collected to the other bees who are working to process the nectar into honey in their mouth, then put it in the honey stomach and then transfer it to other bees several times until honey is ripening. A considerable amount of water will be evaporated in this process, which continues with the help of wing fans that can regulate the air humidity for about 15 to 20 minutes (Balasubramanyam 2021; Zhang et al. 2021). The honey moisture content in our study differed from Wang et al. (2021) that honey moisture from the bee A. cerana which is collected from 42 different honeycombs from China ranges from 17.03 to 18.44%, 18.65% for A. cerana cerana from Hainan province, China (Wu et al. 2020), and 16.99% for A. cerana from Borneo (Malaysian honey) (Moniruzzaman et al. 2013). Furthermore, Erwan et al. (2020) also reported that the honey moisture produced by the A. mellifera bee by using sugar palm and coconut saps ranges from 19.34 to 20.94%. The different honey moisture content has been reported to be affected by the different geographical origins, impacts the different plant types that can be grown in each region, different

environmental conditions (temperature and humidity), and also different bee species, which impact the different ability to evaporate water in the honey.

Reducing sugar and sucrose contents of honey

Sugars in honey are composed of monosaccharides for about 75%, disaccharides are 10 to 15%, and other sugars in small amounts. Honey sugars are responsible as the energy source, hygroscopic, viscosity, and granulation. Several sugars in honey have been reported such as glucose, fructose, sucrose, trehalose, rhamnose, isomaltose, nigerobiose, maltotriose, maltotetraose, melezitose, melibiose, maltulose, nigerose, raffinose, palatinose, erlose and others (Da Silva et al. 2016).

A recent study showed that the honey reducing sugar from the bee A. cerana was beekeeping by using sugar palm and coconut saps, and their combination as the nectar source to produce honey ranges from 62.78 to 68.37% (Table 1). This honey reducing sugar is acceptable by the SNI for treatments SP0, CP0, CP1, and SCP1 but not acceptable for treatments SCP0, and SP1 (Table 1), where the minimum reducing sugar is 65% (National Standardization Agency of Indonesia 2018). This sugar is produced by the mechanism of invertase enzyme activity that change the sap sucrose into simple sugars. It is known that this enzyme is responsible for converting of sucrose into glucose and fructose. These sugars are included in the reducing sugar group and the main component in honey. In the honey maturity process, the sucrose is break down by the invertase enzyme into simple sugars simultaneously, and water will be evaporated to increase the reduced sugar content. In addition, enzymes secreted by the worker bees can also break down the carbohydrate into simple sugars. Furthermore, another enzyme in honey is the diastase enzyme that breaks down starch into simple sugars (Da Silva et al. 2016). The honey reducing sugar in our study (Table 1) differed from what was reported by Erwan et al. (2020), that honey reducing sugar from the bee A. mellifera which was produced by extrafloral nectar (sugar palm and coconut saps) ranges from 60.15 to 73.69%. The different reducing sugar may be affected by the different bee species, which impacts their ability to evaporate water in honey, especially when they convert the complex sugars into simple sugars and different seasons when the study is related to temperature and humidity environmental.

The honey sucrose content from the bee A. cerana in our study ranges from 1.44 to 3.42% (Table 1) and acceptable by SNI is not exceed 5% for the beekeeping honey including A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018) and also accepted by the International standard has been regulated by Codex Alimentarius is not exceed 5% for blossom and honeydew honey (Thrasyvoulou et al. 2018). Naturally, sucrose present in honey in our study originated from sugar palm and coconut saps. The low honey sucrose content in our study is caused by the honey harvested in mature condition characterized by honey cells that have been covered by wax. Furthermore, the invertase enzyme which is produced by the worker bees actively breaks down sucrose from saps into simple sugars. There are two types of invertase enzymes that are produced by the worker bees, namely glucoinvertase which converts sucrose into glucose and fructoinvertase, which converts sucrose into fructose. These enzymes are mostly derived from the bee's secretion and only a small portion from the nectar, while the honeydew from the insect's secretion mostly contains invertase enzymes (Da Silva et al. 2016). The honey sucrose content in our study (Table 1) differed from Erwan et al. (2020), that honey sucrose content from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 4.21 to 4.40%%.

The honey sucrose content is a very important parameter to evaluate the maturity of honey to identify manipulation, where the high levels may indicate adulterations by adding several sweeteners such as cane sugar or refined beet sugar. In addition, indicating the early harvest, where sucrose is not completely transformed into fructose and glucose, the bees feed artificially for a prolonged time using a sucrose syrup (Da Silva et al. 2016; Puscas et al. 2013; Escuredo et al. 2013; Tornuk et al. 2013). Honey is a sugar solution that is supersaturated and unstable so it's easy to crystallize. The honey crystallization is affected by the concentration of glucose, fructose, and water. Fructose is the dominant sugar present in honey from A. mellifera was produced by several plants as the nectar source that workers use to produce honey such as eucalyptus, acacia, bramble, lime, chestnut, sunflower, and from honeydew, except in rape honey was produced by Brassica napus. Rape honey is higher in glucose and lower in fructose which impacts its rapid crystallization (Escuredo et al. 2014). The sugars content present in honey is dependent on the geographical origins which impacts on the different plant types that can grow in each region and impacts the different sugars content from the nectar, which is produced by the nectary gland of plant flowers (Agus et al. 2021; Agussalim et al. 2019; Da Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013). Furthermore, the sugar content in honey is influenced by climate (season, temperature, and humidity), processing (heating process), and storage time (Da Silva et al. 2016; Escuredo et al. 2014; Tornuk et al. 2013).

Diastase enzyme activity and hydroxymethylfurfural (HMF) of honey

A recent study showed that the diastase enzyme activity from the bee A. cerana honey produced by the sugar palm and coconut saps ranges from 5.17 to 9.04 DN (Table 2). This enzyme activity is acceptable by SNI with a minimum of 3 DN for beekeeping honey including the bee A. cerana and A. mellifera (National Standardization Agency of Indonesia 2018), and also acceptable by the international standard has been regulated by Codex Alimentarius with the minimum 3 DN (Thrasyvoulou et al. 2018). One of the honey characteristics is that it contains enzymes originating from the bees, pollen, and nectar from plant flowers, but mostly enzymes are added by the bees when they are convert nectar into honey (Da Silva et al. 2016; Thrasyvoulou et al. 2018). The honey diastase enzyme activity in our study (Table 2) differed from what was reported by Erwan et al. (2020) that the diastase enzyme activity of honey from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) is ranging from 16.48 to 17.12 Schade unit.

Diastases are divided into α - and β -amylases, the natural enzymes present in honey. The α -amylase separates the starch chain randomly in the center to produce dextrin, while the β -amylase separates the maltose in the end chain. The nectar source influences diastase enzyme content in honey (floral and extrafloral nectars) to produce honey and honey geographical origins, which impacts the different chemical composition of the nectar can be produced by the plants which is impact on the honey chemical composition especially diastase enzyme activity. In addition, the bee species are also influencing the activity diastase because it's related to the distance, and the flowers plant numbers that can be visited by the foragers when they are collecting nectar and pollen used to produce honey and bee bread (Da Silva et al. 2016).

Generally, the diastase enzyme has the role of breaking down complex sugars into simple sugars. In addition, this enzyme is role to digesting starch into maltose (disaccharide) and maltotriose (trisaccharide) which are sensitive to heat or thermolabile. Thus, this condition can be used to evaluate the overheating and preservation degree of honey (Da Silva et al. 2016). Furthermore, diastase activity is also used to evaluate honey age related to storage time and temperature because the diastase activity may be reducing when heating above 60°C and longtime storage (Da Silva et al. 2016; Yücel and Sultanoğlu 2013). The honey diastase activity from the bee A. cerana in our study (Table 2) was differed from Wu et al. (2020) for multifloral honey produced by the A. cerana cerana from the Hainan province (China) was 6.70 Göthe. Furthermore, it also differed from Wang et al. (2021) that the diastase activity of A. cerana honey from Qinling Mountains (China) is ranging from 22.05 to 35.67 Göthe. The different diastase activities of honey from A. cerana were reported by previous researchers are influenced by the different plant types as the nectar source to produce honey, different sugar content, and different geographical origin.

Furthermore, the HMF of *A. cerana* honey produced by the sugar palm and coconut saps in our study ranges from 2.24 to 5.81 mg/kg (Table 2). This HMF indicates that honey from our study in fresh condition and acceptable by SNI for beekeeping honey, including from *A. cerana* and *A. mellifera*, not exceed 40 mg/kg (National Standardization Agency of Indonesia 2018) and also acceptable by the international standard regulated by Codex Alimentarius is not to exceed 40 mg/kg for blossom and honeydew honey (Thrasyvoulou et al. 2018). After harvesting, fresh honey generally contains a low HMF ranges from 0 to 4.12 mg/kg honey. Hydroxymethylfurfural is the result of the degradation of honey monosaccharides, especially fructose and glucose, under acid conditions and accelerated by heating. This reaction produce levulinic and formic acids (Da Silva et al. 2016).

Hydroxymethylfurfural is formed after the honey is removed from the comb or when the wax cover is opened and the advanced processing like heating process. The increase of the HMF content occurs in honey with the acidity and is accelerated by the heating process. However, the HMF content is also influenced by sugars content, organic acids presence, pH, moisture content, water activity, and the plant types as the nectar source (floral source). In addition, HMF can also be formed at low temperatures, acidic conditions, and sugar dehydration reactions. Therefore, the higher HMF content's impact on the honey color is darker (Da Silva et al. 2016; Tornuk et al. 2013). The HMF of honey from the A. cerana in our study (Table 2) was differed to previously reported by Wu et al. (2020) for multifloral honey of A. cerana cerana from China is 3.80 mg/kg and 1.69 mg/kg for A. cerana honey from Qinling Mountains, China is 1.69 mg/kg. The different HMF content of honey from A. cerana reported by previous researchers are influenced by the different plant types as the nectar source to produce honey, different sugars content, and different geographical origin.

Acidity of honey

Free acidity is one of the important parameters to evaluate honey deterioration which is characterized by the presence of the organic acids in equilibrium with internal esters, lactone and several inorganic ions such as sulfates, chlorides, and phosphates (Da Silva et al. 2016). This study showed that the honey acidity from *A. cerana* produced by the sugar palm and coconut saps ranges from 26.00 to 36.33 ml NaOH/kg (Table 2). The acidity of *A. cerana* honey in our study is acceptable by SNI not to exceed 50 ml NaOH/kg for the beekeeping honey including *A. cerana* and *A. mellifera*. Furthermore, it is also acceptable by the international standard has been regulated by the Codex Alimentarius is not to exceed 50 meq/kg for blossom and honeydew honeys (Thrasyvoulou et al. 2018).

The sour taste of honey originated from several organic and inorganic acids, where the dominant organic acid present in honey is gluconic acid. This organic acid is produced by the enzyme activity of glucose-oxidase which is added by the bees when they convert nectar into honey, so that it can protect the nectar until honey maturity. This protection mechanism is caused by inhibiting of microorganisms activity in honey (Da Silva et al. 2016). This inhibit mechanism includes the combination of several factors, such as low moisture and the presence of hydrogen peroxide which is produced by the enzyme glucose-oxidase can inhibit the metabolism activity in the microbe cell through the destruction of the cell wall resulting in a change in cytoplasmic membrane permeability (Nainu et al. 2021; Pasias et al. 2018).

The total acidity content in honey is a small quantity. Still, the presence in honey is very important because it can influence the honey stability on the microorganisms, taste or flavor, and aroma of honey. The high acidity indicates the fermentation process occurs when some reducing sugar is break down into acetic acid. Honey acidity content is related to the yeast number where they break down some reducing sugar into ethanol, and if the reaction with the oxygen is formed, the acetic acid which is increasing the honey acidity. Therefore, the higher acidity values may indicate the sugars fermentation process into organic acids. Honey acidity is affected by several factors such as different content of organic acids, different geographical origins, and the season when honey is harvested (Da Silva et al. 2016; Tornuk et al. 2013). The honey acidity from the bee A. cerana in our study (Table 2) differed from previous studied by Wu et al. (2020) for A. cerana cerana honey is 0.80 mol/kg and Guerzou et al. (2021) ranges from 11 to 47 meq/kg for Algerian honey. Furthermore, it is differed from Erwan et al. (2020) that honey acidity from the bee A. mellifera was produced by extrafloral nectar (sugar palm and coconut saps) ranges from 22.00 to 43.00 ml NaOH/kg. The different acidity reported previously with our study is affected by the different plant types as the nectar source to produce honey, honey pH, geographical origin, and organic acids compound; however, our study has not measured the organic acid compound and honey pH.

Table 2. The diastase enzyme activity, hydroxymethylfurfural, and acidity of honey from the bee A. cerana

Treatments	Diastase enzyme activity (DN)	Hydroxymethylfurfural (mg/kg)	Acidity (ml NaOH/kg)
SP0	7.57	5.78	36.33
CP0	5.17	5.04	26.00
SCP0	9.04	4.75	28.60
SP1	6.86	4.77	29.68
CP1	8.51	5.81	28.26
SCP1	6.85	2.24	30.61

Abbreviations: sugar palm sap without added by sugar palm pollen (SP0); coconut sap without added by sugar palm pollen (CP0); coconut sap of 50% + sugar palm sap of 50% without added by sugar palm pollen (SCP0); sugar palm sap was added by sugar palm pollen (SP1); coconut sap was added by sugar palm pollen (CP1); coconut sap of 50% + sugar palm sap of 50% was added by sugar palm pollen (SCP1).

Honey production potency from the sugar palm and coconut saps

Coconut and sugar palm plants have a good prospect to be developed because almost part of the plants can be utilized contributing to communities' income. Generally, the main product from the coconut (Cocos nucifera L.) was harvested as coconut fruit to advance the process into coconut oil and copra. These commodities have a high price, but producing coconut oil and copra are high risk for the farmers because they are just preparing raw materials. Therefore, the utilizing of the sap can be produced by the coconut and sugar palm was also potency feed for the bees was used as the nectar source to produce honey. Sugar palm and coconut saps are the feed potential studied by Erwan et al. (2021b) that the coconut and sugar palm saps can increase the number of honey and bee bread cells of the bee A. cerana. Furthermore, it is also reported that sugar palm and coconut are improving the productivity of the bee A. cerana such as increasing the brood cells number, colony weight, and honey production (Erwan et al. 2022). In addition, the saps from coconut and sugar palm are usually used by farmers to produce sugar using a traditional process.

The coconut plants can produce 12 stalks in a year, and one stalk can produce sap of 90 liters. Thus, one coconut plant can produce 1,080 liters of sap. Furthermore, if the farmers have one hectare of land planted by 100 coconut plants (distance 10 m \times 10 m), so they can produce about 108,000 liters of coconut sap. To produce 1 kg of honey requires coconut sap for about 7 liters and in a year 84 liters are required to produce 12 kg of honey. Thus, honey potency in a year from 100 hectares of land can be calculated as follows: 10,800,000 liters of sap divided by 84 liters of sap and multiplied by 12 kg of honey and obtained 1,542,857,14 kg/year (1,542.857 tons/year) or equivalent with 128.571 tons/month in 100 hectares of the land. Based on the sap production showing that the coconut plants have a big potency to produce honey. This potency was also supported by the harvest area of coconut in West Lombok (Nusa Tenggara Province, Indonesia) was 10,629.36 hectares (Department of Agricultural and Plantations 2021).

Sugar palm plants can be tapped to collect sap for about 5 to 6 months in one stalk, but generally can be tapped not to exceed 4 months. Wahyuni et al. (2021) reported that the production of sugar palm sap per plant ranges from 8 to 22 liters/plant or 300 to 400 liters/season (3 to 4 months) or 800 to 1,500 liters/plant/year (average is 1,150 liters/plant/year). Furthermore, if in one hectare of the plantation we have 100 sugar palm plants, the distance for planting is 10 m \times 10 m, so can be obtained of sap for 115,000 liters.

The field investigation showed that producing 1 kg of honey from the sugar palm sap required about 10 liters and in a year, it is required about 120 liters to produce 12 kg of honey. Thus, the honey potency from the sugar palm sap in a year from the 100 hectares of the sugar palm field is 11,500,000 liters which was divided by 120 liters and multiplied by 12 kg, so is obtained 1,150,000 kg of honey per year (1,150 tons of honey) or equivalent with 95.833 tons/month in 100 hectares area. This potency indicate that the sugar palm sap has a big potency to produce honey which is supported by the report data from the Department of Agricultural and Plantations (2021) that the sap production, sap productivity, and harvest area for sugar palm plants in West Lombok (West Nusa Tenggara 57.46 Province, Indonesia) are tones. 304.80 quintals/hectare, and 188.52, respectively, in the year of 2021. Therefore, it can be concluded that honey is produced by the bee A. cerana from sugar palm and coconut saps as the feed have at quality that is acceptable by Indonesian national standard, and the international standard has been regulated by the Codex Alimentarius. Honey potency production from the coconut sap in 100 hectares area can produce honey of 1,542.857 tons/year or equivalent with 128.571 tons/month, while sugar palm can produce honey of 1,150 tons/year or equivalent with 95.833 tons/month.

ACKNOWLEDGEMENTS

We thank all beekeepers and farmers who support and permit our teams to conduct this study in North Duman Village, Lingsar Sub-district, West Lombok, Indonesia.

REFERENCES

- Agus A, Agussalim, Sahlan M, Sabir A. 2021. Honey sugars profile of stingless bee *Tetragonula laeviceps* (*Hymenoptera: Meliponinae*). Biodiversitas 22: 5205-5210. DOI: 10.13057/biodiv/d221159.
- Agussalim, Agus A. 2022. Production of honey, pot-pollen and propolis production from Indonesian stingless bee *Tetragonula laeviceps* and the physicochemical properties of honey: A review. Livest Res Rural Dev 34 (8), Article #66, http://www.lrrd.org/lrrd34/8/3466alia.html.
- Agussalim, Agus A, Nurliyani, Umami N. 2019. The sugar content profile of honey produced by the Indonesian Stingless bee, *Tetragonula laeviceps*, from different regions. Livest Res Rural Dev 31(6): Article #91, http://www.lrrd.org/lrrd31/6/aguss31091.html.
- Agussalim, Agus A, Umami N, Budisatria IGS. 2018. The type of honeybees forages in district of Pakem Sleman and Nglipar Gunungkidul Yogyakarta. Bul Peternak 42 (1): 50-56. DOI: 10.21059/buletinpeternak.v42i1.28294.
- Agussalim, Agus A, Umami N, Budisatria IGS. 2017. Variation of honeybees forages as source of nectar and pollen based on altitude in Yogyakarta. Bul Peternak 41 (4): 448-460. DOI: 10.21059/buletinpeternak.v41i4.13593.
- AOAC. 2005. Official Method of Association of Official Analytical Chemist. 18th Edition. Association of Official Analytical Chemist. Benjamin Franklin Station, Washington D.C.
- Balasubramanyam MV. 2021. Factors influencing the transformation of nectar to honey in *Apis cerana indica*. Intl J Biol Innov 03: 271-277. DOI: 10.46505/ijbi.2021.3204.
- Da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R. 2016. Honey: Chemical composition, stability and authenticity. Food Chem 196: 309-323. DOI: 10.1016/j.foodchem.2015.09.051.
- Department of Agricultural and Plantations. 2021. Rekapitulasi produksi, luas panen, dan produktivitas aren Provinsi NTB. Dinas Pertanian dan Perkebunan Provinsi NTB, Mataram. [Indonesian].
- Erwan E, Harun M, Muhsinin M. 2020. The honey quality of *Apis* mellifera with extrafloral nectar in Lombok West Nusa Tenggara Indonesia. J Sci Sci Educ 1: 1-7. DOI: 10.29303/jossed.v1i1.482.

- Erwan, Franti LD, Purnamasari DK, Muhsinin M, Agussalim A. 2021a. Preliminary study on moisture, fat, and protein contents of bee bread from *Apis cerana* from different regions in North Lombok Regency, Indonesia. J Trop Anim Prod 22: 35-41. DOI: 10.21776/ub.jtapro.2021.022.01.5
- Erwan, Muhsinin M, Agussalim. 2021b. Enhancing honey and bee bread cells number from Indonesian honeybee *Apis cerana* by feeding modification. Livest Res Rural Dev 33: Article #121. http://www.lrrd.org/lrrd33/10/33121apist.html.
- Erwan, Supeno B, Agussalim. 2022. Improving the productivity of local honeybee (*Apis cerana*) by using feeds coconut sap and sugar palm (sap and pollen) in West Lombok, Indonesia. Livest Res Rural Dev 34: Article #25. http://www.lrrd.org/lrrd34/4/3425apis.html.
- Escuredo O, Dobre I, Fernández-González M, Seijo MC. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149: 84-90. DOI: 10.1016/j.foodchem.2013.10.097.
- Escuredo O, Míguez M, Fernández-González M, Seijo MC. 2013. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem 138: 851-856. DOI: 10.1016/j.foodchem.2012.11.015.
- Guerzou M, Aouissi HA, Guerzou A, Burlakovs J, Doumandji S, Krauklis AE. 2021. From the beehives: Identification and comparison of physicochemical properties of Alergian honey. Resources 10: 94. DOI: DOI: 10.3390/resources10100094.
- Hepburn HR, Radloff SE. 2011. Biogeography. In: Hepburn HR, Radloff SE (eds). Honeybees of Asia. Springer, New York. DOI 10.1007/978-3-642-16422-4_3.
- Karabagias IK, Badeka A, Kontakos S, Karabournioti S, Kontominas MG. 2014. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem 146: 548-557. DOI: 10.1016/j.foodchem.2013.09.105.
- Machado AM, Tomás A, Russo-Almeida P, Duarte A, Antunes M, Vilas-Boas M, Graça Miguel M, Cristina Figueiredo A. 2022. Quality assessment of Portuguese monofloral honeys. Physicochemical parameters as tools in botanical source differentiation. Food Res Intl 157: 111362. DOI: 10.1016/j.foodres.2022.111362.
- Moniruzzaman M, Khalil I, Sulaiman SA, Gan SH. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by *Apis cerana*, *Apis dorsata* and *Apis mellifera*. BMC Complement Altern Med 13: 43.
- Nainu F, Masyita A, Bahar MA, Raihan M, Prova SR, Mitra S, Emran TB, Simal-Gandara J. 2021. Pharmaceutical prospects of bee products: Special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics 10: 822. DOI: 10.3390/antibiotics10070822.
- National Standardization Agency of Indonesia. 2018. Indonesian National Standard for Honey. Badan Standarisasi Nasional, Jakarta.
- Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C. 2018. Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242: 513-518. DOI: 10.1016/j.foodchem.2017.09.083.

- Pohorecka K, Bober A, Skubida M, Zdańska D, Torój K. 2014. A comparative study of environmental conditions, bee management and the epidemiological situation in apiaries varying in the level of colony losses. J Apic Sci 58: 107-132. DOI: 10.2478/JAS-2014-0027.
- Puscas A, Hosu A, Cimpoiu C. 2013. Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. J Chromatogr A 1272: 132-135. DOI: 10.1016/j.chroma.2012.11.064.
- Radloff SE, Hepburn HR, Engel MS. 2011. The Asian Species of Apis. In: Hepburn HR, Radloff SE (eds). Honeybees of Asia. Springer, New York. DOI 10.1007/978-3-642-16422-4_1.
- Schouten C, Lloyd D, Lloyd H. 2019. Beekeeping with the Asian honey bee (*Apis cerana javana* Fabr) in the Indonesian islands of Java, Bali, Nusa Penida, and Sumbawa. Bee World 96: 45-49. DOI: 10.1080/0005772x.2018.1564497.
- Steel RGD, Torrie JH, Zoberer DA. 1997. Principles and Procedures of Statistics a Biometrical Approach. 3rd Edition. McGraw-Hill Inc., New York.
- Supeno B, Erwan, Agussalim. 2021. Enhances production of coffee (*Coffea robusta*): The role of pollinator, forages potency, and honey production from *Tetragonula* sp. (*Meliponinae*) in central Lombok, Indonesia. Biodiversitas 22: 4687-4693. DOI: 10.13057/biodiv/d221062.
- Thrasyvoulou A, Tananaki C, Goras G, Karazafiris E, Dimou M, Liolios V, Kanelis D, Gounari S. 2018. Legislation of honey criteria and standards. J Apic Res 57: 88-96. DOI: 10.1080/00218839.2017.1411181.
- Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A. 2013. Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46: 124-131. DOI: 10.1016/j.indcrop.2012.12.042.
- Wahyuni N, Asfar AMIT, Asfar AMIA, Asrina, Isdar. 2021. Vinegar Nira Aren. Media Sains Indonesia, Tangerang.
- Wang Y, Gou X, Yue T, Ren R, Zhao H, He L, Liu C, Cao W. 2021. Evaluation of physicochemical properties of Qinling *Apis cerana* honey and the antimicrobial activity of the extract against *Salmonella Typhimurium* LT2 in vitro and in vivo. Food Chem 337: 127774. DOI: 10.1016/j.foodchem.2020.127774.
- Wu J, Duan Y, Gao Z, Yang X, Zhao D, Gao J, Han W, Li G, Wang S. 2020. Quality comparison of multifloral honeys produced by *Apis* cerana cerana, *Apis dorsata* and *Lepidotrigona flavibasis*. LWT -Food Sci Technol 134: 110225. DOI: 10.1016/j.lwt.2020.110225.
- Yücel Y, Sultanoğlu P. 2013. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci 1: 16-25. DOI: 10.1016/j.fbio.2013.02.001.
- Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. 2021. Investigation of the maturity evaluation indicator of honey in natural ripening process: The case of rape honey. Foods 10: 2882. DOI: 10.3390/foods10112882.

erwan apis <apiserwan@gmail.com>

[biodiv] Editor Decision

2 pesan

Smujo Editors <support@mail.smujo.id> 18 November 2022 pukul 16.34 Kepada: ERWAN <apiserwan@gmail.com>, AGUSSALIM <agussalim@mail.ugm.ac.id>

ERWAN, AGUSSALIM:

The editing of your submission, "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps," is complete. We are now sending it to production.

Submission URL: https://smujo.id/biodiv/authorDashboard/submission/12166

Biodiversitas Journal of Biological Diversity

erwan apis <apiserwan@gmail.com> Kepada: Smujo Editors <support@mail.smujo.id> 18 November 2022 pukul 20.07

Dear Editor in Chief Biodiversitas

Thanks very much for the good information [Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia

erwan apis <apiserwan@gmail.com>

[biodiv] New notification from Biodiversitas Journal of Biological Diversity

2 pesan

DEWI NUR PRATIWI <support@mail.smujo.id> Balas Ke: Ahmad Dwi Setyawan <editors@smujo.id> Kepada: Erwan <apiserwan@gmail.com> 17 November 2022 pukul 14.10

You have a new notification from Biodiversitas Journal of Biological Diversity:

There is new activity in the discussion titled "BILLING" regarding the submission "Honey quality from the bee Apis cerana, honey potency produced by coconut and sugar palm saps".

Link: https://smujo.id/biodiv/authorDashboard/submission/12166

Ahmad Dwi Setyawan

Biodiversitas Journal of Biological Diversity

erwan apis <apiserwan@gmail.com> Kepada: Ahmad Dwi Setyawan <editors@smujo.id> 17 November 2022 pukul 17.35

Dear Editor in Chief Biodiversitas Thanks for the information [Kutipan teks disembunyikan]

Best Regards,

Dr. Ir. Erwan, M.Si. Faculty of Animal Science, University of Mataram, Indonesia