C3. Dr. Amrullah, M.Si

by Amrullah Amrullah

Submission date: 01-Mar-2023 09:10PM (UTC-0600)

Submission ID: 2026684171

File name: C3. Dr. Amrullah, M.Si.pdf (795.02K)

Word count: 5782

Character count: 20896

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 74 (2015) 53 - 59

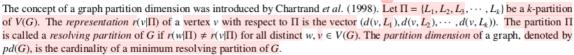
International Conference on Graph Theory and Information Security

The Partition Dimension of a Subdivision of a Complete Graph

Amrullah, Edy Tri Baskoro, Rinovia Simanjuntak, Saladin Uttunggadewa

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract



This paper considers in finding partition dimensions of graphs obtained from a subdivision operation. In particular, we derive an upper bound of partition dimension of a subdivision of a complete graph K_n with $n \ge 9$. Additionally for $n \in [2, 8]$, we obtain the exact values of the partition dimensions.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICGTIS 2015

Keywords: Partition dimension, complete graph, subdivision.

2010 MSC: 05C12, 05C15

1. Introduction

Let G = (V, E) be a connected graph. The distance d(u, v) from a vertex u to a vertex v is defined as the length of a shortest path between u and v. Let $L = \{v_1, v_2, \cdots, v_k\}$ be a subset of V(G), the distance d(v, L) from a vertex v to the set L is $\min\{d(v, v_i)|v_i \in L\}$. Let $\Pi = \{L_1, L_2, L_3, \cdots, L_k\}$ be a k-partition of V(G). The representation $r(v|\Pi)$ of a vertex v with respect to Π is the vector $(d(v, L_1), d(v, L_2), \cdots, d(v, L_k))$. The partition Π is called a resolving partition of G if $r(w|\Pi) \neq r(v|\Pi)$ for all distinct $w, v \in V(G)$. The partition dimension of a graph, denoted by p(G), is the cardinality of a minimum resolving partition of G. A vertex v is said to be a dominant vertex if $d(v, L_i) \leq 1$ for each $i \in [1, k]$.

Let G be a graph on n vertices with the vertex-set V(G). The subdivision graph S(G) of a graph G is the graph obtained from G by replacing each edge uv of G by a new vertex w and the two new edges uw and $vw^{[4]}$. The vertex w is called a subdivision vertex on uv. For any graph G, the subdivision of graph G will always be bipartite, since the vertex-set can be partitioned into V_1 and V_2 where $V_1 = V(G)$ and V_2 is the set of all subdivision vertices, with any edge in G connects one vertex in V_1 and one vertex in V_2 . Therefore, the partition dimension of a subdivision of

E-mail address: amrullah@students.itb.ac.id, {ebaskoro, s_uttunggadewa, rino}@math.itb.ac.id

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Organizing Committee of ICGTIS 2015 doi:10.1016/j.procs.2015.12.075

graph is bounded above by the the bounds for bipartite graphs as follows.

Theorem 1. [3] Let G be a bipartite graph with partite set V_1 and V_2 , then

- 1. $pd(G) \le |V_1| + 1$, if $|V_1| = |V_2|$, and
- 2. $pd(G) \leq max\{|V_1|, |V_2|\}, if |V_1| \neq |V_2|.$

In this paper, we derive an upper bound for the partition dimension of the subdivision of a complete graph $S(K_n)$. The upper bound of the partition dimension of $S(K_n)$ is an improvement to the bound given in Theorem 1.

2. Main Results

From now on, let $V(K_n) = \{v_1, v_2, \dots, v_n\}$. The vertex-set of $S(K_n)$ is $V(S(K_n)) = \{v_1, v_2, \dots, v_n\} \cup \{x_{i,j} | i, j \in [1, n], i < j\}$. Note that $x_{i,j}$ are the subdivision vertices on $v_i v_j$. The edge-set of $S(K_n)$ is $E(S(K_n)) = \{v_i x_{i,j} | i, j \in [1, n] \text{ and } i < j\} \cup \{v_j x_{i,j} | i, j \in [1, n] \text{ and } i < j\}$.

We will find the partition dimension of $S(K_n)$ for $n \in [2, 8]$ which will be presented in Theorem 15. To do so, the following lemmas are needed.

Lemma 2. Let $n \ge 5$, $p \ge 3$, and $\Pi = \{L_1, L_2, \dots, L_p\}$ be a resolving partition of $S(K_n)$. Then, (i) $d(v_i, L_k) \le 3$ for all $k \in [1, p]$ and $i \in [1, n]$. (ii) $d(x_{i,j}, L_k) \le 4$ for all $k \in [1, p]$ and $i, j \in [1, n]$.

Proof. Since $d(v_i, v_j) \le 2$ for $i, j \in [1, n]$ and $d(v_i, x_{j,k}) \le d(v_i, v_j) + d(v_j, x_{j,k})$, we obtain $d(v_i, x_{j,k}) \le 2 + 1 = 3$ for $i, j, k \in [1, n]$. This implies $d(v_i, L_k) \le 3$ for each $k \in [1, p]$ and $i \in [1, n]$.

Now, because of $d(x_{i,j}, x_{s,t}) \le d(x_{i,j}, v_j) + d(v_j, v_s) + d(v_s, x_{s,t})$ for $i, j, s, t \in [1, n]$, we get $d(x_{i,j}, x_{s,t}) \le 1 + 2 + 1 = 4$. Hence, we obtain $d(x_{i,j}, L_k) \le 4$ for each $k \in [1, p]$.

Lemma 3. Let $n \geq 5$, $p \geq 3$, and $\Pi = \{L_1, L_2, \dots, L_p\}$ be a resolving partition of $S(K_n)$. For $i, j \in [1, n]$ the representation $r(v_i|\Pi) = (0, 2, 2, \dots, 2)$ if and only if there is no vertex v_j such that $r(v_j|\Pi) = (0, 1, 1, \dots, 1)$.

Proof. We assume that $r(v_i|\Pi) = (0, 2, 2, \dots, 2)$ and $r(v_j|\Pi) = (0, 1, 1, \dots, 1)$ for some $i, j \in [1, n]$. Since $r(v_i|\Pi) = (0, 2, 2, \dots, 2)$, all subdivision vertices which is adjacent to v_i belong to L_1 . Since $x_{i,j}$ is a subdivision vertex on v_iv_j , $x_{i,j}$ is contained in L_1 . Since $r(v_j|\Pi) = (0, 1, 1, \dots, 1)$ and $x_{i,j}$ is adjacent to v_j , we obtain $r(x_{i,j}|\Pi) = (0, 2, 2, \dots, 2) = r(v_i|\Pi)$, a contradiction.

Lemma 4. If $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$, then the set $\{v_i | i \in [1, n]\}$ is contained in at least two partition classes in Π .

Proof. For a contradiction, assume that $\{v_i|i \in [1,n]\}\subseteq L_1$. This implies L_2 and L_3 consist of the subdivision vertices of $S(K_n)$. So, for any $x \in L_2$ and $y \in L_3$ satisfies d(x,y) = 2 or d(x,y) = 4. By Lemma 2, we have $r(v_i|\Pi) = (0, c_2, c_3)$ where $1 \le c_2, c_3 \le 3$. Consider v_1 in two cases.

Case 1. v_1 is a dominant vertex. it means $r(v_1|\Pi) = (0, 1, 1)$. This implies there are at least two subdivision vertices $x_{1,2}$ and $x_{1,3}$ which are adjacent to v_1 such that $x_{1,2} \in L_2$ and $x_{1,3} \in L_3$.

Now, we consider $x_{2,3}$, $x_{2,4}$, $x_{2,5}$. Clearly, all vertices $x_{2,3}$, $x_{2,4}$, $x_{2,5} \notin L_3$ (since otherwise if one of $x_{2,3}$, $x_{2,4}$, $x_{2,5} \in L_3$ then v_2 is a dominant vertex too). If one of $\{x_{2,j}|j\in[3,5]\}\subseteq L_2$, then $r(v_2|\Pi)=(0,1,3)=r(v_j|\Pi)$ (because $d(v_i,L_3)=1$ or $d(v_i,L_3)=3$ for each $i\in[1,n]$). This implies there are three subdivision vertices $x_{2,3}$, $x_{2,4}$, $x_{2,5}$ such that $x_{2,3}$, $x_{2,4}$, $x_{2,5} \in L_1$. On the other hand, there are only two allowed representations of these vertices, namely (0,2,2) and (0,2,4).

Case 2. v_1 is not a dominant vertex.

Since L_2 and L_3 consist of subdivision vertices, there is a vertex v_i such that $r(v_i|\Pi) = (0, 1, 3)$. Thus there is a subdivision vertex $x_{i,d}$ which is adjacent to v_i such that $x_{i,d} \in L_2$. Since representation (0, 1, 3) is used by v_i and v_d is adjacent to $x_{i,d} \in L_2$, we obtain $d(v_d, L_3) = 1$. This implies that $r(v_d|\Pi) = (0, 1, 1)$ or v_d is a dominant vertex, which is settled in Case 1.

Lemma 5. Let $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ be a resolving partition of $S(K_n)$. Let $\{v_1, v_2, \dots, v_n\} \subseteq L_1 \cup L_2$. If L_1 contains at least three v_i 's then $r(v_i|\Pi) \ne (0, c_1, c_2)$ for all $c_1, c_2 \in [2, 3]$.

Proof. Since $\{v_1, v_2, \dots, v_n\} \subseteq L_1 \cup L_2$ we have $d(v_i, L_j) \le 2$ for $j \in [1, 2]$. Let $v_1, v_2, v_3 \in L_1$ and $v_4, v_5 \in L_2$. Since L_3 does not contain a vertex v_i , by Lemma 2, we obtain $d(v_i, L_3)$ with $i \in \{1, 3\}$. This implies $(c_1, c_2) \notin \{(2, 2), (3, 3), (3, 2)\}$. To complete the proof, we will show that $(c_1, c_2) \ne (2, 3)$

Assume that there is a vertex v_i such that $r(v_i|\Pi) = (0, 2, 3)$ for $i \in [1, 3]$. Let $r(v_1|\Pi) = (0, 2, 3)$. This implies the subdivision vertices $x_{1,4}, x_{1,5} \in L_1$. Therefore, since for $i \in [1, n]$ $d(v_i, L_3) = 1$ or $d(v_i, L_3) = 3$ and $v_4, v_5 \in L_2$, we have $r(v_4|\Pi) = (1, 0, 1)$ and $r(v_5|\Pi) = (1, 0, 3)$. This implies $x_{2,4}, x_{3,4}, x_{4,5} \notin L_1$ (because if one of $x_{2,4}, x_{3,4}, x_{4,5} \in L_1$, let $x_{2,4} \in L_1$, then $r(x_{2,4}|\Pi) = r(x_{1,4}|\Pi)$). Since $r(v_4|\Pi) = (1, 0, 1)$, one of $x_{2,4}, x_{3,4}, x_{4,5} \in L_3$, then both vertices' representations are equal to (1, 1, 0)).

Without loss of generality, let $x_{2,4} \in L_2$ and $x_{3,4} \in L_3$. Since $r(v_4|\Pi) = (1,0,1)$ and $x_{2,4} \in L_2$, we have $r(x_{2,4}|\Pi) = (1,0,2)$. Since $x_{3,4} \in L_3$, we obtain $x_{3,5} \notin L_1$ (because if $x_{3,5} \in L_1$ then $r(x_{3,5}|\Pi) = (0,1,2) = r(x_{1,4}|\Pi)$). Since $r(v_5|\Pi) = (1,0,3)$, we have $x_{3,5} \in L_2$. Therefore we obtain $r(x_{3,5}|\Pi) = (1,0,2) = r(x_{2,4}|\Pi)$, a contradiction.

Corollary 6. Let $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ be a resolving partition of $S(K_n)$. Let $\{v_1, v_2, \dots, v_n\} \subseteq L_1 \cup L_2$. If L_1 contains three vertices v_1, v_2, v_3 then their representations are (0, 1, 1), (0, 1, 3), (0, 2, 1).

Proof. By Lemma 5, we have $r(v_i|\Pi)$ ∈ {(0,1,1), (0,1,2), (0,1,3), (0,2,1)} for $i \in [1,3]$. Since L_3 only contains subdivision vertices, we obtain $d(v_i, L_3) = 1$ or $d(v_i, L_3) = 3$. This implies $r(v_i|\Pi) \in \{(0,1,1), (0,1,3), (0,2,1)\}$ for $i \in [1,3]$.

Lemma 7. If $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$ then each L_k with $k \in [1, 3]$ contains v_i for some $i \in [1, n]$.

Proof. Lemma 4 shows that all $v_i's$ are contained in at least two partition classes of Π. Assume that $\{v_i|1 \le i \le n\} \subseteq L_1 \cup L_2$. Since $n \ge 5$, one of L_1, L_2 contain at least three vertices v_i . Let L_1 contains at least three v_i . By Corollary 6, we obtain $r(v_i|\Pi) \in \{(0, 1, 3), (0, 1, 1), (0, 2, 1)\}$ for all $v_i \in L_1$. Let $r(v_1|\Pi) = (0, 1, 1), r(v_2|\Pi) = (0, 1, 3)$, and $r(v_3|\Pi) = (0, 2, 1)$. Since $r(v_2|\Pi) = (0, 1, 3)$, and $r(v_3|\Pi) = (0, 2, 1)$, we have $x_{2,3} \in L_1$ and we get $r(x_{2,3}|\Pi) = (0, 2, 2)$. Therefore, we have $x_{1,2} \in L_2$ and $x_{1,3} \in L_3$ (because if $x_{1,2} \in L_1$ or $x_{1,3} \in L_1$ then $r(x_{2,3}|\Pi) = r(x_{1,2}|\Pi)$ or $r(x_{2,3}|\Pi) = r(x_{1,3}|\Pi)$). So, we get $r(x_{1,2}|\Pi) = (1,0,2)$.

Now, consider $x_{1,4}, x_{1,5}$. Since $r(x_{1,2}|\Pi) = (1,0,2)$, so we have $x_{1,4}, x_{1,5} \notin L_2$ (because if $x_{1,4} \in L_2$ or $x_{1,5} \in L_1$, then $r(x_{1,2}|\Pi) = r(x_{1,4}|\Pi)$ or $r(x_{1,2}|\Pi) = r(x_{1,4}|\Pi)$). If $x_{1,4}, x_{1,5} \in L_3$ or $x_{1,4}, x_{1,5} \in L_1$, then we obtain $r(x_{1,4}|\Pi) = r(x_{1,5}|\Pi)$. Therefore, one of $\{x_{1,4}, x_{1,5}\}$ is in L_1 and the other is in L_3 . Let $x_{1,4} \in L_1$ and $x_{1,5} \in L_3$. This implies $r(x_{1,4}|\Pi) = (0, 1, 2)$ and $r(x_{1,5}|\Pi) = (1, 1, 0)$.

Next, we consider $x_{3,5}$. Since $r(v_3|\Pi) = (0,2,1)$, this implies we have $x_{3,5} \in L_1$ or $x_{3,5} \in L_3$. If $x_{3,5} \in L_1$, then $r(x_{3,5}|\Pi) = (0,1,2) = r(x_{1,4}|\Pi)$. If $x_{3,5} \in L_3$, then $r(x_{3,5}|\Pi) = (1,1,0) = r(x_{1,5}|\Pi)$. As consequence, each partition class L_k with $k \in [1,3]$ must contain a vertex v_i where $i \in [1,n]$.

Referring to Lemma 7, we obtain upper bounds for distances between vertices and partition classes in K_n which sharpen the ones in Lemma 2.

Corollary 8. If $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$, then (i) $d(v_i, L_k) \le 2$ for each $k \in [1, 3]$, and $i \in [1, n]$. (ii) $d(x_{i,j}, L_k) \le 3$ for each $k \in [1, 3]$, and $i, j \in [1, n]$.

Lemma 9. Let $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$. If L_1 contains v_1, v_2 , and v_3 then their representations are (0, 1, 1), (0, 2, 1), and (0, 1, 2).

Proof. By Lemma 7, there are the vertices $v_i s$ in L_2 and L_3 . Let $v_4 \in L_2$, $v_5 \in L_3$. By Corollary 8, the allowed representations of v_1, v_2, v_3 are (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2).

We assume $r(v_1|\Pi) = (0, 2, 2)$. Hence, $x_{1,2}, x_{1,3} \in L_1$. Since $v_2, v_3 \in L_1$, we obtain $r(x_{1,2}|\Pi), r(x_{1,3}|\Pi) \in \{(0, 2, 3), (0, 3, 2)\}$. Let $r(x_{1,2}|\Pi) = (0, 2, 3)$ and $r(x_{1,3}|\Pi) = (0, 3, 2)$. This implies $r(v_2|\Pi) = (0, 1, 2)$ and $r(v_3|\Pi) = (0, 2, 1)$. Since $r(v_2|\Pi) = (0, 1, 2)$ and $r(v_3|\Pi) = (0, 2, 1)$, we have $x_{2,3} \in L_1$. So, we get $r(x_{2,3}|\Pi) = (0, 2, 2) = r(v_1|\Pi)$, a contradiction. As a consequence, the representations of v_1, v_2, v_3 are (0, 1, 1), (0, 1, 2), (0, 2, 1).

Lemma 10. If $n \ge 5$ and $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$ then each L_k for $k \in [1, 3]$ contains at most two vertices $v_i s_i$.

Proof. For a contradiction, we assume that L_1 contain three vertices v_i s, i.e. v_1, v_2, v_3 . By Lemma 7, suppose $v_4 \in L_2$, $v_5 \in L_3$. By Lemma 9, we have $r(v_1|\Pi) = (0, 1, 1)$, $r(v_2|\Pi) = (0, 1, 2)$ and $r(v_3|\Pi) = (0, 2, 1)$. This implies $r(x_{2,3}|\Pi) = (0, 2, 2)$.

Now, consider subdivision vertices adjacent to v_1 . We obtain $x_{1,2}, x_{1,3} \notin L_1$ (since otherwise the representation of a vertex in L_1 is (0,2,2) which is the same to $r(x_{2,3}|\Pi)$). Since $r(v_2|\Pi) = (0,1,2)$ and $r(v_3|\Pi) = (0,2,1)$, we obtain $x_{1,2} \in L_2$ and $x_{1,3} \in L_3$. So, we get $r(x_{1,2}|\Pi) = (1,0,2), r(x_{1,3}|\Pi) = (1,2,0)$.

Consider $x_{1,4}, x_{1,5}$. If $x_{1,5} \in L_1$, then $r(x_{1,5}|\Pi) = r(v_3|\Pi)$. If $x_{1,5} \in L_3$, then $r(x_{1,5}|\Pi) = r(x_{1,3}|\Pi)$. So, we have $x_{1,5} \in L_2$. If $x_{1,4} \in L_1$, then $r(x_{1,4}|\Pi) = r(v_2|\Pi)$. If $x_{1,4} \in L_2$, then $r(x_{1,4}|\Pi) = r(x_{1,2}|\Pi)$. So, we have $x_{1,4} \in L_3$.

Next, we consider $x_{3,5}$. Since $r(v_3|\Pi) = (0,2,1)$ (it means that v_3 is not adjacent to a vertex in L_2), we obtain $x_{3,5} \in L_1$ or $x_{3,5} \in L_3$. If $x_{3,5} \in L_1$, then we have $r(x_{3,5}|\Pi) = (0,2,1) = r(v_3|\Pi)$, a contradiction. If $x_{3,5} \in L_3$, then we get $r(x_{3,5}|\Pi) = (1,2,0) = r(x_{1,2}|\Pi)$, a contradiction. As consequences, we obtain that a partition class contains at most two vertices $v_i s$.

Lemma 10 gives a following corollary.

Corollary 11. For $n \ge 7$, $pd(S(K_n)) \ge 4$.

Proof. By Lemma 10, it is not possible to have only 3 partition classes for $n \ge 7$.

Lemma 12. Let $n \in \{5, 6\}$ and $\Pi = \{L_1, L_2, L_3\}$ be a resolving partition of $S(K_n)$. Let v_i and v_j be two vertices where $i, j \in [1, n]$. If L_k contains both v_i and v_j then neither $d(v_i, L_t) = 2$ nor $d(v_j, L_t) = 2$ for $t \neq k \in [1, 3]$.

Proof. By Lemma 10, we suppose $v_1, v_2 \in L_1, v_3, v_4 \in L_2$ and $v_5 \in L_3$. For a contradiction, assume $r(v_1|\Pi) = (0, 2, 2)$. This implies the vertices which are adjacent to v_1 , namely $x_{1,2}, x_{1,3}, x_{1,4}, x_{1,5} \in L_1$. Since $v_3, v_4 \in L_2$, we obtain $r(x_{1,3}|\Pi), r(x_{1,4}|\Pi) \in \{(0, 1, 2), (0, 1, 3)\}$. Let $r(x_{1,3}|\Pi) = (0, 1, 2)$ and $r(x_{1,4}|\Pi) = (0, 1, 3)$. So, we have $r(v_4|\Pi) = (1, 0, 2)$. Next, consider $x_{2,4}$. Since $r(v_4|\Pi) = (1, 0, 2)$, we obtain $x_{2,4} \in L_1$ or $x_{2,4} \in L_2$. If $x_{2,4} \in L_1$, then $r(x_{2,4}|\Pi) = (0, 1, 2) = r(x_{1,3}|\Pi)$, a contradiction. If $x_{2,4} \in L_2$, then $r(x_{2,4}|\Pi) = (1, 0, 3)$. Therefore, we have $r(v_2|\Pi) = (0, 1, 2) = r(x_{1,3}|\Pi)$, a contradiction. □

Lemma 13. Let $n \in \{5,6\}$ and $\Pi = \{L_1, L_2, L_3\}$ be a resolving partition of $S(K_n)$. Let also $v_1, v_2 \in L_1$ and $v_3, v_4 \in L_2$. If v_1 is a dominant vertex then $x_{1,3}$ and $x_{1,4}$ belong to different partition classes of L_1 and L_2

Proof. It is clear that $x_{1,3}$, $x_{1,4}$ are contained in different partition classes of Π , as otherwise $r(x_{1,3}|\Pi) = r(x_{1,4}|\Pi)$.

First, we shall show that either $x_{1,3}$ or $x_{1,4}$ is in L_1 . For a contradiction, assume that both $x_{1,3}$ and $x_{1,4}$ are in $L_2 \cup L_3$. It means that $x_{1,3} \in L_2$ and $x_{1,4} \in L_3$, which implies $r(x_{1,4}|\Pi) = (1,1,0)$ and $r(x_{1,3}|\Pi) = (1,0,2)$. Since $r(x_{1,4}|\Pi) = (1,1,0)$, we have $r(v_4|\Pi) \in \{(1,0,1),(2,0,1)\}$. Now, assume $r(v_4|\Pi) = (1,0,1)$, and so, we have one of $x_{3,4}, x_{2,4}$ in L_1 . If $x_{3,4} \in L_1$ then $r(x_{3,4}|\Pi) = (0,1,2) = r(v_3|\Pi)$. If $x_{2,4} \in L_1$ then $r(x_{2,4}|\Pi) = (0,1,2)$. This implies $r(v_2|\Pi) = (0,2,1)$. Therefore, we get $x_{2,3} \notin L_2$. This implies $x_{2,3} \in L_1$ (because if $x_{1,3} \in L_3$ then $r(x_{2,3}|\Pi) = (1,1,0) = r(x_{1,4}|\Pi)$). Therefore, we obtain $r(x_{2,3}|\Pi) = (0,1,2) = r(x_{2,4}|\Pi)$, a contradiction. Next, assume $r(v_4|\Pi) = (2,0,1)$. By Lemma 12 that $r(v_3|\Pi) \neq (2,0,2)$ and $r(x_{1,3}|\Pi) = (1,0,2)$, we obtain $r(v_3|\Pi) = (1,0,1)$. So, we have $x_{2,3} \in L_1$ and $x_{2,4} \notin L_3$ (because if $x_{1,3} \in L_3$ then $r(x_{1,3}|\Pi) = (1,1,0) = r(x_{1,4}|\Pi)$). Since $r(v_4|\Pi) = (2,0,1)$, we get $x_{2,4} \notin L_1$. So, we get $x_{2,4} \in L_2$. Therefore we obtain $r(x_{2,4}|\Pi) = (1,0,2) = r(x_{1,3}|\Pi)$, a contradiction As consequences of two the conditions, we obtain that one of $\{x_{1,3}, x_{1,4}\}$ is in L_1 .

Without lost of generality, let $x_{1,3} \in L_1$. Lastly, we shall show that $x_{1,4}$ } is in L_2 . Assume that $x_{1,4} \in L_3$. Hence, we have $r(x_{1,3}|\Pi) = (0,1,2)$ and $r(x_{1,4}|\Pi) = (1,1,0)$. Since (0,1,2) is used by $r(x_{1,3}|\Pi)$, Corollary 8 and Lemma 12, we have $r(v_2|\Pi) = (0,2,1)$. Hence, $x_{1,2} \notin L_2$. Since $r(v_1|\Pi) = (0,1,1)$, $x_{1,2} \notin L_2$, $x_{1,3} \in L_1$ and $x_{1,3} \in L_3$, we have $x_{1,5} \in L_2$. By Corollary 8,we have $r(v_3|\Pi) = (1,0,2)$ and $r(v_4|\Pi) = (2,0,1)$. This implies that we obtan $r(x_{1,3}|\Pi) = r(x_{2,3}|\Pi)$. This completes the proof.

Corollary 14. Let $n \in \{5,6\}$ and $\Pi = \{L_1, L_2, L_3\}$ be a resolving partition of $S(K_n)$. If $v_1, v_2 \in L_1$, then one of v_1 or v_2 is not a dominant vertex.

Table 1. The representations of all vertices of $S(K_8)$.

$v \in L_1 r(v \Pi')$	$v \in L_2 \ r(v \Pi')$	$v \in L_3 \ r(v \Pi')$	$v \in L_4 r(v \Pi')$
$v_7 = (0,2,1,1)$	$v_3 = (1,0,2,1)$	$v_5 = (2,1,0,1)$	$v_1 = (2, 1, 2, 0)$
$v_8 = (0,1,2,1)$	$v_4 = (2,0,1,1)$	$v_6 = (1,2,0,1)$	$v_2 = (2,2,2,0)$
$x_{3,6} = (0,1,1,2)$	$x_{1,3} = (2,0,3,1)$	$x_{4,6} = (2,1,0,2)$	$x_{1,2} = (3,2,3,0)$
$x_{3,8} = (0,1,3,2)$	$x_{1,4} = (3,0,2,1)$	$x_{4,7} = (1,1,0,2)$	$x_{1,6} = (2,2,1,0)$
$x_{6,8} = (0,2,1,2)$	$x_{1,5} = (3,0,1,1)$	$x_{5,6} = (2,2,0,2)$	$x_{1,7} = (1,2,2,0)$
x _{7,8} =(0,2,2,2)	$x_{1,8} = (1,0,3,1)$	$x_{5,7} = (1,2,0,2)$	$x_{2,3} = (2,1,3,0)$
	$x_{3,4} = (2,0,2,2)$		$x_{2,4} = (3,1,2,0)$
	$x_{3,5} = (2,0,1,2)$		$x_{2,5} = (3,2,1,0)$
	$x_{4,5} = (3,0,1,2)$		$x_{2,6} = (2,3,1,0)$
	$x_{4,8} = (1,0,2,2)$		$x_{2,7} = (1,3,2,0)$
	$x_{5,8} = (1,0,1,2)$		$x_{2,8} = (1,2,3,0)$
			$x_{3,7} = (1,1,2,0)$
			$x_{6,7} = (1,3,1,0)$

Proof. By Lemma 10, we suppose $v_1, v_2 \in L_1, v_3, v_4 \in L_2$ and $v_5 \in L_3$. For a contradiction, assume $r(v_1|\Pi) = (0, 1, 1)$. By Lemma 13, we obtain $x_{1,3} \in L_1$ and $x_{1,4} \in L_2$. So, we have $r(x_{1,3}|\Pi) = (0, 1, 2)$ and $r(x_{1,4}|\Pi) = (1, 0, 2)$. Hence, we obtain $r(v_3|\Pi) = (1, 0, 1)$. Therefore, by Lemma 12, we get $r(v_4|\Pi) = (2, 0, 1)$.

Next, since $r(x_{1,3}|\Pi) = (0,1,2)$, $r(v_1|\Pi) = (0,1,1)$ and by Lemma 12, we have $r(v_2|\Pi) = (0,2,1)$. Since $r(v_4|\Pi) = (2,0,1)$ and $r(v_2|\Pi) = (0,2,1)$, we obtain $x_{2,4} \in L_3$. Hence $x_{2,3} \notin L_3$ (because if $x_{2,3} \in L_3$ then $r(x_{2,3}|\Pi) = r(x_{2,4}|\Pi)$). Since $r(v_2|\Pi) = (0,2,1)$, this means that V_2 is not adjacent to a vertex in L_2 . So we have $x_{2,4} \in L_1$. This implies $r(x_{2,3}|\Pi) = (0,1,2) = r(x_{1,3}|\Pi)$, a contradiction.

Let G be a connected graph and $v \in V(K_n)$. The open neighbourhood of v, $N(v) = \{x \in V(G) | vx \in E(G)\}$ and the closed neighbourhood of v, $N[v] = N(v) \cup \{v\}$.

Theorem 15.
$$pd(S(K_n)) = \begin{cases} 2 & \text{if } n = 2, \\ 3 & \text{if } n \in [3, 4] \\ 4 & \text{if } n \in [5, 8]. \end{cases}$$

Proof. For n = 2, K_2 is a path, and so the graph $S(K_n)$ is also a path. This implies $pd(S(K_n)) = 2$. For n = 3, 4, we obtain that $S(K_n)$ is not a path. Therefore, $pd(S(K_n)) \ge 3$. Let $\Pi = \{L_1, L_2, L_3\}$ be a partition of $V(S(K_n))$ as depicted in Figure 1. It is easy to verify that Π is a resolving partition of $S(K_n)$.

For n = 5, 6, by a contradiction, we assume $\Pi = \{L_1, L_2, L_3\}$ is a resolving partition of $S(K_n)$. Since n = 5, 6 and by Lemma 10, we have that there exits at most two v_i which are in the a partition class L_i . Let $v_1, v_2 \in L_1$, $v_3, v_4 \in L_2$ and $v_5 \in L_3$. By Corollary 14 and Lemma 12, we obtain $r(v_1|\Pi) = (0, 1, 2)$, $r(v_2|\Pi) = (0, 2, 1)$ and $r(v_3|\Pi) = (1, 0, 2)$, $r(v_4|\Pi) = (2, 0, 1)$. Since $r(v_2|\Pi) = (0, 2, 1)$ and $r(v_3|\Pi) = (1, 0, 2)$, we get $x_{2,4} \in L_1$. So, we obtain $r(x_{2,4}|\Pi) = (0, 1, 2) = r(v_1|\Pi)$, a contradiction. Therefore, we have $pd(S(K_n)) \ge 4$.

To show $pd(S(K_8)) \le 4$, define a partition $\Pi' = \{L'_1, L'_2, L'_3, L'_4\}$ of $V(S(K_8))$, see Figure 2, where

 $L'_1 = \{v_8, v_7, x_{7,8}, x_{6,8}, x_{3,8}, x_{3,6}\},\$

 $L_2' = \{v_3, v_4, x_{3,4}, x_{1,4}, x_{1,5}, x_{4,8}, x_{4,5}, x_{3,5}, x_{5,8}, x_{1,8}, x_{1,3}\},\$

 $L_3^7 = \{v_5, v_6, x_{5,6}, x_{4,7}, x_{4,6}, x_{5,7}\}$ and

 $L_4' = \{v_1, v_2, x_{1,2}, x_{2,3}, x_{2,8}, x_{2,7}, x_{2,6}, x_{2,5}, x_{2,4}, x_{6,7}, x_{1,7}, x_{1,6}, x_{3,7}\}.$

The representations of all vertices are shown in Table 1. It is easy to verify that Π' is a resolving partition of $S(K_8)$.

For $S(K_7) = S(K_8) - N[v_3]$, all subdivision vertices which are adjacent to v_3 , namely $x_{1,3}, x_{2,3}, x_{3,4}, \cdots, x_{3,8}$. Now, let $a_i = min\{i, 3\}$, $b_i = max\{i, 3\}$. Since for $i \in \{2, 4, 8\}$ each x_{a_i,b_i} is contained in the same partition class containing v_i , deleting these vertices in $S(K_8)$ do not change $r(v_i|\Pi')$. Meanwhile for $i \in \{1, 5, 6, 7\}$, each v_i is contained in distinct partition class with x_{a_i,b_i} and it is adjacent to other subdivision vertex which lies in the same partition class with x_{a_i,b_i} . So, deleting each x_{a_i,b_i} in $S(K_8)$ doesn't change $r(v_i|\Pi')$ for $i \in \{1, 5, 6, 7\}$. Since L_2 contains two vertices v_2 and v_3 , removing $N[v_3]$ in $S(K_8)$ do not change the representations of all the remaining vertices. Hence, $\Pi'' = \{L_1'', L_2'', L_3'', L_4''\}$ is a resolving partition of $S(K_7)$ where $L_i'' = L_i' - \{x|x \in L_i' \cap N[v_3]\}$. Since deleting $N[v_3]$ do not change all remaining vertices in $S(K_8)$, we have Π'' as a resolving partition of $S(K_7)$. Therefore, we obtain $pd(S(K_7)) = 4$.

We can see that $N[v_5]$ and $N[v_7]$ has the similar property as $N[v_3]$. Therefore by similar way, we have $pd(S(K_5)) = pd(S(K_6)) = 4$ where $S(K_6) = S(K_7) - N[v_5]$ and $S(K_5) = S(K_6) - N[7]$.

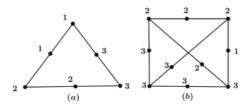


Fig. 1. A resolving partition of $S(K_3)$ and $S(K_4)$.

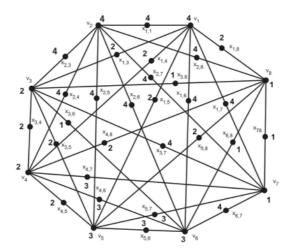


Fig. 2. A resolving partition of $S(K_8)$.

Lemma 16. Let $\Pi = \{L_1, L_2, \dots, L_p\}$ be a resolving partition of $S(K_n)$ and each L_j contains v_k for some $k \in [1, n]$. If there is a partition class L_c such that $d(v_i, L_c) \le 1$ for all $i \in [1, n]$, then $pd(S(K_{n+1})) \le p+1$ and $pd(S(K_{n+2})) \le p+1$.

Proof. The proof is divided into two parts:

First, we will show $pd(S(K_{n+1})) \le p+1$. Let $\Pi' = \{L'_1, L'_2, \dots, L'_p, L'_{p+1}\}$ be a partition of $V(S(K_{n+1}))$ where $L'_c = L_c \cup \{x_{1,n+1}, x_{2,n+1}, \dots, x_{n,n+1}\}$, $L'_i = L_i$ for $i \in [1, p]$, $i \ne c$, and $L'_{p+1} = \{v_{n+1}\}$. We have to note that L'_c satisfies $d(v_i, L'_c) \le 1$ for all $i \in [1, n+1]$ also. This fact can be used to construct a resolving partition of $S(K_{n+2})$.

Let $G' = K_{n+1}$, $B = N[v_{n+1}]$, and $C = V(S(G')) \setminus B$. Let u, w be two distinct vertices in the same partition class of Π' . Since $L'_{p+1} = \{v_{n+1}\}$, $\{x_{1,n+1}, x_{2,n+1}, \cdots, x_{n,n+1}\} \subseteq L'_c$, and $L'_i = L_i$ for $i \in [1, p]$, $i \neq c$, we obtain $d(v, L'_i) = d(v, L_i)$ for all $v \in C$. Hence, for all $u, w \in C$, if u, w are distinguished by L_t in Π with $t \in [1, p]$, then u, w are distinguished by L'_t di Π' .

Next, we consider $u \in B$. It means that $u = x_{i,n+1} \in L'_c$ or $u = v_{n+1} \in L'_{p+1}$ for $i \in [1,n]$. We will show that the vertex u has distinct representation with the other vertex w in V(S(G')). For $u \in L'_{p+1}$, it has distinct representation with the others in S(G') because L'_{p+1} only contain one vertex. If $u = x_{i,n+1}$ and $w \in L'_c - B$ with $i \in [1,n]$, then u, v are distinguished by L'_{p+1} (because $d(u, L'_{p+1}) = 2$ and $d(w, L'_{p+1}) = 1$). If $u = x_{i,n+1}$ and $u = x_{i,n+1}$ for $u \neq i \neq j \in [1,n]$, then consider u_i and u_j . We know that u_i is adjacent to u and u is adjacent to u. If $u = x_{i,n+1}$ are in the same partition class, then there is a partition class u in u for some u is adjacent to u and u in u

 Π' is a resolving partition of S(G'). Therefore, we have $pd(S(G')) \leq p+1$.

Second, let $G'' = K_{n+2}$, $B = N[v_{n+2}]$, and $C = V(S(G'')) \setminus B$. We will show $pd(G'') \le p+1$. Let $\Pi'' = \{L''_1, L''_2, \dots, L''_p, L''_{p+1}\}$ be a partition of V(G'') where $L''_i = L'_i$ for $i \in [1, p]$ and $L''_{p+1} = L'_{p+1} \cup N[v_{n+2}]$. We note that L''_{p+1} satisfies $d(v_i, L''_{n+1}) \le 1$ for all $i \in [1, n+2]$. So, the fact can be used to construct a resolving partition of $S(K_{n+3})$.

 $\begin{aligned} & \underset{p+1}{\sum_{p+1}} \text{ or } all \ i \in [1, n+2]. \text{ So, the fact can be used to construct } a \text{ resolving partition of } S(K_{n+3}). \\ & \text{Since } L_i'' = L_i' \text{ and } L_{p+1}'' = L_{p+1}' \cup N[\nu_{n+2}, \text{ we obtain that any } u \in C \text{ have } d(u, L_k') = d(u, L_k') \text{ for } k \in [1, p]. \text{ Hence,} \\ & \text{for two distinct vertices } u, w \text{ in } L_j'' \text{ where } j \in [1, p] \text{ we have } r(u|\Pi'') \neq r(w|\Pi''). \end{aligned}$

Next, consider $u, w \in L_{p+1}$. If $u = v_{n+1}$ and $w = v_{n+2}$, then u, w are distinguished by L''_c , (because $d(u, L''_c) = 1$ and $d(w, L''_c) = 2$). If $u = x_{i,n+2}$ and $w = x_{j,n+2}$ where $i \neq j \in [1, n+1]$, then consider v_i and v_j . We can see that v_i is adjacent to u and v_j is adjacent to w for $i, j \in [1, n+1]$. If v_i, v_j are in the same partition class, then there is a partition class L'_d in Π' such that $v_i v_j$ are distinguished by L'_d in Π' . Since each L'_k contains a vertex v_i for $i \in [1, n]$, the vertices $v_i v_j$ are distinguished by L'_d , and v_{n+1} is only adjacent to vertices in L'_c , we obtain u, w are distinguished by L'_d in S(G''). If v_i, v_j are in the different partition classes, then u, w are distinguished by v_i or v_j in S(G'').

If $u = v_{n+2}$ and $w = x_{i,n+2}$, then $r(u|\Pi'')$ has not a component which is value '1' and $r(u|\Pi'')$ has a component which is value '1'. So, we have $r(u|\Pi'') \neq r(w|\Pi'')$. If $u = v_{n+1}$ and $w = x_{i,n+2}$, then we consider v_i which is adjacent to w for some $i \in [1, n+1]$. If $v_i \notin L''_p$ then u, v are distinguished by L''_p (because u is only adjacent to vertices in $L''_p \cup L''_{p+1}$). If $v_i \in L''_p$, then u, w are distinguished by L''_i where L'_i is a partition class distinguishing $v_i, x_{j,n+1}$ with $j \in [1, n]$ in $S(K_{n+1})$. Hence, we have $r(u|\Pi'') \neq r(w|\Pi'')$. As consequences, Π'' is a resolving partition of S(G''), so $pd(S(G'')) \leq p+1$.

Theorem 17. If $n \geq 9$, then $pd(S(K_n)) \leq \lceil \frac{n}{2} \rceil$.

Proof. Consider $S(K_8)$ with $\Pi = \{L_1, L_2, L_3, L_4\}$ be a partition of $V(S(K_n))$ with $L_i = L_i'$ where L_i' is the partition class of Π' on the Theorem 15. We can see that Π satisfies the condition in Lemma 16. Furthermore, the partition class L_4 satisfies $d(v_i, L_4) \le 1$ for all $i \in [1, 8]$, Hence, by the constructions in Lemma 16, we obtain $pd(S(K_9)) \le 5$ and $pd(S(K_{10})) \le 5$. Now, repeat the same process recursively to obtain $pd(S(K_n)) \le \lceil \frac{n}{2} \rceil$ for $n \ge 9$.

Acknowledgment. This research was supported by Research Grant "Riset Unggulan Perguruan Tinggi ITB-DIKTI", Indonesian Ministry of Research, Technology, and Higher Education.

References

- Amrullah, Assiyatun H, Baskoro ET, Uttunggadewa S, Simanjuntak R. The partition dimension for a subdivision of homogeneous caterpillars, AKCE International Journal of Graphs and Combinatorics 1998;130:157-168.
- Amrullah, Darmaji, Baskoro ET. The partition dimension for homogeneous firecrackers, Far East Journal of Applied Mathematics 2015;90:77-98
- 3. Chartrand G, Salehi E, Zhang P. The partition dimension of graph, Aequationes Mathematicae 2000;59:45-54.
- 4. Chartrand G, Lesniak L, Zhang P. Graphs & Digraphs, Fifth Edition, Chapman & Hall/CRC 2011.
- 5. Rodríguez-Velázquez JA, Yero IG, Lemańska M. On the partition dimension of trees, Discrete Applied Mathematics 2014;textbf166:204-209.
- 6. Chartrand G, Salehi E, Zhang P, On the partition dimension of graph, Congressus Numerantium 1998;130:157-168.
- 7. Harary F, and Melter R, On the metric dimension of a graph, Ars Combinatoria 1976;2:191-195.

C3. Dr. Amrullah, M.Si

ORIGINALITY REPORT

%
SIMILARITY INDEX

11%
INTERNET SOURCES

5%
PUBLICATIONS

5%

STUDENT PAPERS

PRIMARY SOURCES

www.scitepress.org

Internet Source

5%

2

Submitted to School of Business and Management ITB

Student Paper

2%

Exclude quotes

On

Exclude matches

< 2%

Exclude bibliography On

C3. Dr. Amrullah, M.Si

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
7 0	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	