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Abstract

The concept of a graph partition dimension was introduced by Chartrand e al. (1998). Let Il = {L,, Ly, Ly, -- , Ly} be a k-partition
of V(G). The representation r(v|[I) of a vertex v with respect to Il is the vector (d(v, L ).d(v. Ly),- -~ .d(v, Ly)). The partition I1
is called a resalving partition of G if r(w|I1) # r(v|[I) for all distinct w, v € V(). The partition dimension of a graph, denoted by
pd(G), is the cardinality of a minimum resolving partition of G.

This paper considers in finding partition dimensions of graphs obtained from a subdivision operation. In particular, we derive an
upper bound of partition dimension of a subdivision of a complete graph K, with n = 9. Additionally for n € [2, 8], we obtain the
exact values of the partition dimensions.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Let G = (V, E) be a connected graph. The distance d(u, v) from a vertex u to a vertex v is defined as the length of a
shortest path between u and v. Let L = {v;, v, -+ , v} be a subset of V(G), the distance d(v, L) from a vertex v to the
set L is min{d(v, vi)lv; € L} LetI1 = {Ly, L5, L3,--- , L} be a k-partition of V(G). The representation r(v[II) of a vertex
v with respect to Il is the vector (d(v, L), d(v, Lz), - - - , d(v, Ly)). The partition I1 is called a resolving partition of G if
r(w|II) # r(v[IT) for all distinct w,v € V(G). The partition dimension of a graph, denoted by pd(G), is the cardinality
of a minimum resolving partition of G. A vertex v is said to be a dominant vertex if d(v, L;) < 1 foreach i € [1, &].

Let GG be a graph on n vertices with the vertex-set V(G). The subdivision graph S (G) of a graph G is the graph
obtained from G by replacing each edge uv of G by a new vertex w and the two new edges uw and vw!*!. The vertex
w is called a subdivision vertex on uv. For any graph G, the subdivision of graph G will always be bipartite, since
the vertex-set can be partitioned into V| and V, where V; = V(G) and V; is the set of all subdivision vertices, with
any edge in GG connects one vertex in V; and one vertex in V. Therefore, the partition dimension of a subdivsion of a
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graph is bounded above by the the bounds for bipartite graphs as follows.

Theorem 1. ! Let G be a bipartite graph with partite set Vy and Vs, then
L pd(G) < Vil + 1, if V1| = |Val, and
2. pd(G) < max{|Vil,IValL if V| # [Val.

In this paper, we derive an upper bound for the partition dimension of the subdivision of a complete graph 5(K,,).
The upper bound of the partition dimension of § (K,,) is an improvement to the bound given in Theorem 1.

2. Main Results

From now on, let V(K;) = {v, .-+, v} The vertex-set of §(K,) is V(S(Ky)) = {viva,--- va} Uxgglij €
[1,n], i < j}. Note that x; ; are the subdivision vertices on v;v;. The edge-set of S(K,,) is E(S(K,)) = {vix li,j €
[Ln]and i< jhuivixli, je[l,n]landi < j}

We will find the partition dimension of §(K,,) for n € [2, 8] which will be presented in Theorem 15. To do so, the
following lemmas are needed.

Lemma 2. Letn=5,p =3 and 1 ={L,, Ly, -, L} be a resolving partition of S (K,). Then,
(i) divi,Ly) <3 forallke[l, plandic[l,n].
(ii) d(x;j, Ly) < 4 forallk € [1, pland i, j € [1,n].

Proof. Since d(vi,vj) = 2 for i, j € [1,n] and d(vi, xj0) = divi, vj) +d(v}, x;jx). we obtain d(v;, xjz) <2 +1 = 3 for
i, ik €[1,n]. This implies d(v;, L) < 3 foreach k € [1, pl and i € [1,n].

Now, because of d(x; j, x;) < d(x; j vy +d(vi,vi)+dlve, xg ) fori, j,s,t € [1,n], we getd(x;j,x ) 1 +2+1 =4
Hence, we obtain d(x; ;, L) < 4 foreach k € [1, p]. [

Lemma 3. Letn = 5, p = 3, and Il = {Ly, Ly, -+, L,} be a resolving partition of S(K,,). For i, j € [1,n] the
representation r(vi[ll) = (0,2,2, .- -, 2) if and only if there is no vertex v such that r(v[l1) = (0,1,1,--- | 1).

Proof. We assume that r(w|IT) = (0,2,2,---,2) and r(v;[II) = (0, 1, 1,..., 1) for some i, j € [I,n]. Since r(vII) =
(0,.2,2,---,2), all subdivision vertices which is adjacent to v; belong to L;. Since x; ; is a subdivision vertex on v,
X; j is contained in L;. Since r(vj|IT) = (0, 1, 1,...,1) and x; ; is adjacent to v;, we obtain r(x; /II) = (0,2,2,---,2) =
r(vi|IT), a contradiction. O

Lemmad. [fn = 5and Il = {L,, L, L3} is a resolving partition of S (K,,), then the set {vi|i € [1,n]} is contained in at
least two partition classes in I1.

Proof. For a contradiction, assume that {v;[i € [1,n]} € L;. This implies L; and L; consist of the subdivision vertices
of S(K,). So, for any x € L, and y € L; satisfies d(x,y) = 2 or d(x,y) = 4. By Lemma 2, we have r(v|II) = (0, ¢2, ¢3)
where 1 £ ¢5,¢3 = 3. Consider v, in two cases.

Case 1. v, is a dominant vertex. it means r(vi|II) = (0, 1, 1). This implies there are at least two subdivision vertices
x1,2 and x; 3 which are adjacent to v; such that x;2 € L; and x5 € Ls.

Now, we consider x2 3, x24, x25. Clearly, all vertices x23, x24,x25 € L (since otherwise if one of x23,x24, x25 € L3
then 1, is a dominant vertex too). If one of {x2;j € [3.5]} € La, then #(v2[II) = (0,1,3) = r(v[II) (because
divi, L3) = 1 ord(v;, L3) = 3 for each i € [1, n]). This implies there are three subdivision vertices x2 3, X24, X2,5 such
that x; 3, X34, X2 5 € L;. On the other hand, there are only two allowed representations of these vertices, namely (0, 2, 2)
and (0,2, 4).

Case 2. v, is not a dominant vertex.

Since L, and L; consist of subdivision vertices, there is a vertex v; such that »(v;|[IT) = (0, 1, 3). Thus there is a
subdivision vertex x;, which is adjacent to v; such that x; ; € L,. Since representation (0, 1,3) is used by v; and v, is
adjacent to x; 4 € L,, we obtain d{v,, L;) = 1. This implies that r(v4/II) = (0,1, 1) or v, is a dominant vertex, which is
settled in Case 1. D
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Lemma 5. Letn = 5and Il = {L,,L;, L3} be a resolving partition of 5(K,,). Let {v|,va,--- ,v,} € LU Ly If L
contains at least three v;’s then r(w|II) £ (0, ¢y, c2) for all ¢1, 2 €2, 3].

Proof. Since {vy, vz, -+, vy} € LU Ly we have d(v;, Lj) < 2 for j € [1,2]. Let vy, v, vs € Ly and vy, vs € Ly, Since L;
does not contain a vertex v;, by Lemma 2, we obtain d{(v;, L;) with i € {1, 3}. This implies (¢, c2) € {(2,2),(3,3),(3,2)}.
To complete the proof, we will show that (¢, ¢2) # (2,3)

Assume that there is a vertex v; such that r(v;|II) = (0,2,3) for i € [1, 3]. Let r(v|IT) = (0,2,3). This implies the
subdivision vertices x; 4. x;5 € L;. Therefore, since fori € [1,n] d(v;,.[3) = 1 or d(v;.L3) = 3 and vy, v5 € L, we
have r(v4|I1) = (1,0, 1) and r(vs|II) = (1,0, 3). This implies x24, ¥34, %45 € L; (because if one of x24, X34, Y45 € L,
let x4 € Ly, then r(x; 4[IT) = r(x, 4|ID)). Since r{vslIT) = (1,0, 1), one of X24, X34, Xa5 is in Ls. Therefore, we have
exact one subdivision vertex of x4, x3.4,x15 € L3 (because if there are two x24, 34, Xxa5 € L3, then both vertices’
representations are equal to (1, 1,0)).

Without loss of generality, let x24 € L> and x34 € L. Since r(vslll) = (1,0,1) and x24 € L>, we have r{x:4[[1) =
(1,0,2). Since x34 € Lz, we obtain x35 ¢ L; (because if x35 € L then r(x3s[IT) = (0,1,2) = r(x; 4/I1)). Since
Fvs|IT) = (1,0,3), we have x35 € L2. Therefore we obtain r(x35|I1) = (1,0,2) = r(x24|I1), a contradiction.

Corollary 6. Let n = 5 and I1 = {Ly, L2, L3} be a resolving partition of S(K,). Let {vi,va,--- ,vu} C Ly U L2 If Ly
contains three vertices vi,va, vs then their representations are (0, 1, 1),(0,1,3),(0,2,1).

Proof. By Lemma 5, we have r(v[I) € {(0,1,1),(0,1,2),(0,1,3),(0,2,1)} for i € [1,3]. Since L; only contains
subdivision vertices, we obtain d(v;,L3) = 1 or d(v;, L3) = 3. This implies r{v;[II) € {(0,1,1),(0,1,3),(0,2,1)} for
ie[1.3]. (|

Lemma 7. If n = 5and Il = {L,, L;, L3} is a resolving partition of S(K,) then each Ly with k € [1,3] contains v; for
some i €1, n].

Proof. Lemma 4 shows that all v{s are contained in at least two partition classes of I1. Assume that {vj|1 < i < n} C
L, U L;. Since n = 5, one of L, L, contain at least three vertices v;. Let L, contains at least three v;. By Corollary 6,
we obtain r(v,|IT) € {(0,1,3),(0,1,1), (0,2, 1)} for all v; € L,. Let r(v,[IT) = (0, 1, 1), r{v5[IT) = (0, 1, 3), and r(vs|IT) =
(0,2, 1). Since r(w;|IT) = (0,1, 3), and r(vs[IT) = (0,2, 1), we have x> 3 € L; and we get r(x; 3|[1) = (0,2, 2). Therefore,
we have x,5 € Ly and x; 3 € L3 (because if x;2 € L) or x5 € Ly then r(x33|[1) = r(x;5|I1) or r(xs3[1) = r(x; 3/ID).
So, we get r(x;2[I1) =(1,0,2).

Now, consider x 4. x; 5. Since ri{x;2/I1) = (1,0,2), so we have x4, x5 & L2 (because if x;4 € L2 0or x5 € Ly, then
r(x1 2T = r(x4lTD) or r(xy 2T = r(xpalfD). I x14, 615 € L3 or x1.4,x15 € L1, then we obtain r(x; 4/TT) = r(x; s[IT).
Therefore, one of {x; 4, x15}is in L; and the other isin L. Let x4 € L; and x5 € L3. This implies r(x; 4/II) = (0, 1, 2)
and r{x sy = (1,1,0).

Next, we consider x35. Since r{vs|Il) = (0,2,1), this implies we have x35 € Lj or x3s € Ls. If x35 € Ly, then
s = (0,1,2) = rixp4[ID). If x35 € L, then r(x;s|ID) = (1, 1, 0) = r(x,s|[I). As consequence, each partition
class L, with k£ € [1, 3] must contain a vertex v; where i € [1,n]. O

Refering to Lemma 7, we obtain upper bounds for distances between vertices and partition classes in K, which
sharpen the ones in Lemma 2.

Corollary 8. Ifn = 5and Il = {Ly, L, L3} is a resolving pantition of 5(K,), then
(i) divi,Ly) < 2 foreach k € [1,3], and i € [1,n].
(i) dix;j,Ly) <3 foreachk € [1,3), and i, j € [1,n].

Lemma 9. Letn = 5 and 11 = (L, L, L3} is a resolving partition of S(K,,). If L, contains vy, v, and vs then their
representations are (0,1, 1),(0,2, 1), and (0, 1,2).

Proof. By Lemma 7, there are the vertices v;s in L, and Ls. Let vy € L;, vs € L;. By Corollary 8, the allowed
representations of vy, va, v3 are (0,1,1),(0, 1, 2), (0,2, 1), (0,2,2).

We assume r(v|[I1) = (0,2,2). Hence, x;2.x; 3 € L;. Since va,v3 € Ly, we obtain r(x;2|IT), r(x, 3/[D € {(0,2,3),
(0, 3, 2)}. Let r(x; o|I1) = (0, 2, 3y and r(x, 3[I1) = (0, 3,2). This implies r(v,|I1) = (0, 1, 2) and r(v;|I1) = (0,2, 1). Since
F(va|IT) = (0, 1,2) and r(vs|IT) = (0,2, 1), we have x, 5 € L;. So, we get r(x,3[IT) = (0,2, 2) = r(v|II), a contradiction.
As a consequence, the representations of vy, v, v are (0, 1, 1),(0,1,2), (0,2, 1). [

35
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Lemma 10. Ifn = 5 and Il = {L, Ly, L3} is a resolving partition of §(K,) then each L, for k € [1,3] contains at most
IWo Vertices v;s.

Proof. For a contradiction, we assume that L, contain three vertices v;s, i.e. vi, v, v3. By Lemma 7, suppose vy € L,
vs € Ls. By Lemma 9, we have r(v|I1) = (0, 1, 1), r(v,|IT) = (0, 1,2) and r(vs|II) = (0, 2, 1). This implies r(x;3|I1) =
(0,2.2).

Now, consider subdivision vertices adjacent to v,. We obtain x, 5, x; 3 € L, (since otherwise the representation of
a vertex in L; is (0,2,2) which is the same to r(x;3|[1)). Since r(15|I[1) = (0, 1,2) and r(vs|II) = (0, 2, 1), we obtain
X2 € Ly and x5 € Ls. So, we get r(x; 5|IT) = (1,0,2), r(x; 51D = (1, 2, 0).

Consider x4, x15. If x1.5 € Ly, then r(x;s|II) = r(v3|ID). If x15 € L3, then r(xy 5|1 = r(x3|I1). So, we have
x15 € La. If x4 € Ly, then rixya|IT) = r{vo|I1). If x4 € La, then r(xy4|IT) = r(x;2|I1). So, we have x4 € Ls.

Next, we consider x3s. Since r(v3|II) = (0,2, 1) (it means that v3 is not adjacent to a vertex in [»), we obtain
X35 € Lyor xss € Ls. If x35 € Ly, then we have rixss|[1) = (0,2, 1) = r(vs|II), a contradiction. If x3 5 € L3, then we
get r(xss|I1) = (1,2,0) = r(x2|I1), a contradiction. As consequences, we obtain that a partition class contains at most
two vertices v;s. O

Lemma 10 gives a following corollary.
Corollary 11. Forn =7, pd(S(K,) = 4.

Proof. By Lemma 10, it is not possible to have only 3 partition classes forn = 7. (]

Lemma 12. Let n € {5, 6} and I1 = {Ly, L2, L3} be a resolving partition of 8 (Ky). Let vi and v; be two vertices where
i,j€[1,n]. If Ly contains both v; and v; then neither d(vi, L) = 2 nor d(v;, L) = 2 fort # k € [1,3].

Proof. By Lemma 10, we suppose v;.va € Ly, vi, vy € L and vs € Ls. For a contradiction, assume r{(v,[II) =
(0,2,2). This implies the vertices which are adjacent to v;, namely x;,,x;3,%14,%15 € L;. Since vs,vy € L,
we obtain r(x; 5|I1), rix; 2IT) € {(0,1,2),(0,1,3)}. Let r{x;5/[1) = (0,1,2) and r(x, oJI1) = (0, 1, 3). So, we have
r(vgIT) = (1,0,2). Next, consider x;4. Since r(vg|Il) = (1,0, 2), we obtain x;4 € Ly or 54 € Lr. If x54 € Ly,
then r(x,4I1) = (0,1,2) = r(x;3|[I), a contradiction. If x54 € Ly, then r(xo4/IT) = (1,0, 3). Therefore, we have
F(w|IT) = (0, 1, 2) = r(x; 3/I1), a contradiction. (|

Lemma 13. Let n € {5,6} and Il = {L,, L., L3} be a resolving partition of S (K,,). Let also vy, v, € L, and v3,v4 € L,.
If vy is a dominant vertex then x, 5 and x, 4 belong to different partition classes of L, and L,

Proof. Itis clear that x| 3, x; 4 are contained in different partition classes of I1, as otherwise r(x 3|/IT) = r{x; 4[IT).

First, we shall show that either x; ; or x; 4 is in ;. For a contradiction, assume that both x; 3 and x; 5 are in L, U L;.
It means that x;3 € L> and x14 € L3, which implies r(x;4/IT) = (1,1,0) and r(x; 3/IT) = (1,0, 2). Since r(x;s[ll) =
(1, 1, 0), we have r(va/IT) € {(1.0,1),(2,0, 1)}. Now, assume r(v4IT) = (1,0, 1), and so, we have one of x3.4, x2.4 in L.
If x34 € Lj then r(x34IT) = (0,1,2) = r(vs|II). If x24 € L; then r(x24[IT) = (0, 1,2). This implies r(w:|II) = (0,2, 1).
Therefore, we get xa3 ¢ L. This implies x23 € Lj (because if x5 € L3 then r(xa3|ll) = (1,1,0) = rix;4/ID)).
Therefore, we obtain r(x:3(I1) = (0,1,2) = r(x24/II), a contradiction. Next, assume r(v4/ll) = (2,0, 1). By Lemma
12 that r(vs|II) # (2,0,2) and r(x;3[[1) = (1,0,2), we obtain r(vs|IT) = (1,0, 1). So, we have x23 € L) and x24 ¢ [3
(because if x13 € Lz then rixy3|IT) = (1, 1,0) = r(x14[lT)). Since r(vslll) = (2,0,1), we get x24 € L;. So, we get
X214 € L. Therefore we obtain r(x; 4|TI) = (1, 0, 2) = r(x, 5/II), a contradiction As consequences of two the conditions,
we obtain that one of {x) 5, x; 4} isin L;.

Without lost of generality, let x; 3 € L;. Lastly, we shall show that x, 4} is in £;. Assume that x, 5 € ;. Hence,
we have r(x;;|II) = (0,1,2) and r(x;4II) = (1,1,0). Since (0, 1,2) is used by r(x;3|II), Corollary 8 and Lemma
12, we have r(v-|I) = (0,2, 1). Hence, x;5 € L. Since r(vi[I1) = (0,1,1), xy2 & [, x;3 € Ly and . x5 € Ls,
we have x;5 € L,. By Corollary 8,we have r(vsI1) = (1,0,2) and r(v4II) = (2,0, 1). This implies that we obtan
F(xy 5|TT) = r(x55/I1). This completes the proof. =

Corollary 14. Let n € {5,6} and Il = {L,,L,, L3} be a resolving partition of S (K,)). If vi,v, € Ly, then one of v| or v,
is not a dominant vertex.
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Table 1. The representations of all vertices of 8§(Kg).
ve Ly rivIl) v E Ly riv|Il") ve Ly riv[Il") ve Ly rivfll")
vy =(0.2.1.1) v =(10.2.1) vs =(2,1.0.1) v =(2,1.2.00
vg =(0,1,2,1) va =(20.1.1) ve =(1.2,0.1) v2 =(2,22,0)
a6 =(0,1,1,2) x13 =(2,03.1) Xap =(2.1.0.2) xa =(3.2.3.00
xig =(0,1,3,2) Xy =(3.02.1) X7 =(1.1.0.2) X =(2.2.1.00
xos =(0,2.1.2) xp5 =(3,0.1,1) x55 =(2.2.0.2) x7=(1220
x7x =(0,22.2) g =(1.031) xs7 =(1.2,0.2) 23 =(2.1.3.00
x4 =(2,02.2) x24=(3.1,2.00
xas =(2.0.1,2) x5 =(3.2.1.00
a5 =(3.0.1.2) X6 =(2.3.1.)
g =(1.022) r7=(1320
g =(1.0,1,2) g =(1230
x17=(1.1.200)

xa7 =(13.1.00)

Proof. By Lemma 10, we suppose vi, 2 € Ly, vi,vs € Ly and vs € Ls. For a contradiction, assume r(w|I1) = (0, 1, 1).
By Lemma 13, we obtain x;3 € L; and x14 € L. So, we have r(x;3II) = (0, 1,2) and r(x; 4/IT) = (1,0,2). Hence, we
obtain r(vs[IT) = (1,0, 1). Therefore, by Lemma 12, we get r(vs[II) = (2,0, 1).

Next, since r(xy3|IT) = (0, 1,2), ri{v|II) = (0, 1,1) and by Lemma 12, we have r(v2|II) = (0,2, 1). Since r(v4|ll) =
(2,0, 1)y and r(v2|II) = (0, 2, 1), we obtain x24 € L3. Hence x23 ¢ L3 (because if x23 € Lz then r(x23|I1) = r(x24[I1)).
Since r(vo[IT) = (0,2, 1), this means that V5 is not adjacent to a vertex in L>. So we have x,4 € L,. This implies
r(x23ID = (0, 1, 2) = r(x, 5/TI), a contradiction. a

Let & be a connected graph and v € V(K,). The open neighbourhood of v, N(v) = {x € V(G)|vx € E(G)} and the
closed neighbourhood of v, N[v] = N(v) U {v}.

2ifn=2,
Theorem 15. pd(S(K,)) =4 3 if n € [3.4]
4ifnel5.8]

Proof. Forn = 2, K5 is a path, and so the graph S(K,,) is also a path. This implies pd(S (K,))) = 2. For n = 3,4, we
obtain that §(K,) is not a path. Therefore, pd(S (K,)) = 3. LetIl = {L,, L;, L3} be a partition of V(S (K,)) as depicted
in Figure 1. It is easy to verify that 1 is a resolving partition of S (K,,).

For n = 5,6, by a contradiction, we assume II = {L,,L,, L5} is a resolving partition of $(K,,). Since n = 5,6
and by Lemma 10, we have that there exits at most two v; which are in the a partition class L;. Let vj,v; € Ly,
v,y € Ly and vs € Ls. By Corollary 14 and Lemma 12, we obtain r(v{[II) = (0, 1,2), r{vo[I1) = (0,2, 1) and
r(vslll) = (1,0,2), r(vgII) = (2,0, 1). Since r{va|IT) = (0,2,1) and r(v3[I1) = (1,0,2), we get x24 € L,. So, we obtain
r(x24/I1) = (0, 1, 2) = r(v[I1), a contradiction. Therefore, we have pd(S (K,)) = 4.

To show pd(S (Ky)) < 4, define a partition IT" = {L], L, L}, L} of V(S (Ky)). see Figure 2, where

r

L. = {Vg, V7, X7.8, X6.8, X3.8, X36},
r

L) ={vs,va, X34, X14,X15, X4 8, X45, X35, X58, X1.8, X1 3}
r

L, ={vs, v, Xs6, X47, X456, X57} and

L; = AV V2, X2, K23, X280 X2.7 X2,60 X2.5, X245 X6.7 X1,7: X16» X537}
The representations of all vertices are shown in Table 1. It is easy to verify that I is a resolving partition of S (Ky).
For §(K7) = §(Ky) — N[v;], all subdivision vertices which are adjacent to vs, namely X} 3, X235, X34, -+ , X35. Now,
let a; = min{i, 3}, b; = max{i, 3}. Since for i € {2,4,8} each x, 4, is contained in the same partition class containing v;,
deleting these vertices in §(Kyg) do not change r(v;[I1'.) Meanwhile for i € {1,5,6,7}, each v; is contained in distinct
partition class with x, ;, and it is adjacent to other subdivision vertex which lies in the same partition class with x,, .
So, deleting each x4, in 5 (Kg) doesn’t change r(v;|II') for i € {1, 5, 6,7}. Since L; contains two vertices v and vs,
removing N[vs]in S (Ky) do not change the representations of all the remaining vertices. Hence, 11" = {L}', LY, LY, L7}
is a resolving partition of §(K57) where L = L — {x|x € L n N[vs]}. Since deleting N[vs] do not change all remaining
vertices in §(Ky), we have I1" as a resolving partition of S(K5). Therefore, we obtain pd(5(K7)) = 4.
We can see that N[vs] and N[v7] has the similar property as N[v3]. Therefore by similar way, we have pd(5(Ks)) =
pe(S(Ke)) = 4 where S(Ke) = S (K7) — N[vs] and 5 (Ks) = S(Ke) — N[7]. a
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Fig. 1. A resolving partition of S (K1) and 8 (K3).

Fig. 2. A resolving partition of 8 (Kg).

Lemma 16. Let 11 = {Ly,L;,-- - , L,} be a resolving partition of S (K,,) and each L; contains vy for some k € [1,n]. If
there is a partition class L, such that d(v;,, L.) < 1 foralli € [1,n], then pd(5(K,;1)) < p+1 and pd(S(K,.2)) < p+1.

Proof. The proof is divided into two parts:

First, we will show pd(S(K,.,)) < p+ 1. Let 11" = {L], LS.~ .L;,. L;M} be a partition of V(8§(K,.,)) where L =
Lo UXiners Xapetss o s Xunerhs LD = Ly for i € [1,pl, i # ¢, and L;m = {V,+1)- We have to note that L] satisfies
div;, L)) < 1 forall i € [1,n + 1] also. This fact can be used to construct a resolving partition of § (K,,,2).

Let G' = K41, B = N[v,1 ], and C = V(5(G')) \ B. Let u, w be two distinct vertices in the same partition class of
I Since L | = {vaerh (X1 000s Xomets 0 Xuer) © Ly, and LY = L; for i € [1, p].i # ¢, we obtain d(v, L)) = d(v, L;)
forallv e C( Hence, for all u,w € C, if u, w are distinguished by L, in [T with ¢ € [1, p], then &, w are distinguished by
L diIl'.

Next, we consider w € B. It means that # = X; .01 € L. Or st = vy € L'Vr] for i € [1,n]. We will show that the
vertex u has distinct representation with the other vertex w in V($(G")). Foru € L;m‘ it has distinct representation
with the others in §(G') because L;H_] only contain one vertex. If u = x;,,+1 and w € L. — Bwithi € [1,n], then u, v are
distinguished by L;m (because d(u, L;,H) = 2 and d(w, LLH) = . Ifu = xiper and w = xj01 fori # j € [1,n], then
consider v; and v;. We know that v; is adjacent to i and v; is adjacent to w. If v, v; are in the same partition class, then
there is a partition class Ly in Il for some d € [1, p] such that v;, v; are distinguished by Ly in I1 fori € [1,n]. Since
each L, contains a vertex v, and the vertices vy, v; are distinguished by Z; in I1, we obtain u, w are distinguished by L,
in 5(G"). I[f v;, v; are in the different partition classes, then u, w are distinguished by v; or v; in §(G'). As consequences,
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IT" is a resolving partition of 5(G"). Therefore, we have pd(S(G")) < p + 1.

Second, let G” = K;12, B = N[vii2], and C = V(S(G" )\ B. We will show pd(G”) < p+ 1. LetI1” = {L,L],--- | L]

2 e
L.} be a partition of V(G") where L}’ = Lj fori € [I.p]and L), | = L} | UN[vs.2]. We note that L7 satisfies
d{v,-,L;H) <1 foralli e [1,n+ 2]. So, the fact can be used to construct a resolving partition of §(K,:3).

Since LY = L! and L:H = L;H_l U N[vs2, we obtain that any u € C have d(u, L)) = d(u, L}) for k € [1, p]. Hence,
for two distinct vertices u, w in L;-' where j € [1, p] we have r(uIT") # r{w|I1”).

Next, consider i, w € Lps1. If it = wyey and w = V42, then u, w are distinguished by L), (because d(u, L") = 1
and dw, L) = 2). If u = x; 47 and w = xj,.5 where i # j € [L,n + 1], then consider v; and v;. We can see that
v; is adjacent to u and v; is adjacent to w for i, j € [1,n + 1]. If v;,v; are in the same partition class, then there is a

partition class L, in [1" such that v;v; are distinguished by L/, in II". Since each L] contains a vertex v; for i € [1,n],

the vertices v;v; are distinguished by L/, and v,,;, is only adjacent to vertices in L], we obtain u, w are distinguished
by LY in S(G"). If v;, v; are in the different partition classes, then u, w are distinguished by v; or v; in S(G").

If u = v,2 and w = X2, then r(u|IT”) has not a component which is value *1° and r(u|TT"”) has a component
which is value *1°. So, we have r(ul1"”) £ r(w[II"). If u = v,,; and w = x;,,,>, then we consider v; which is adjacent
to w for some 7 € [1,n+ 1]. If v; ¢ LI then u, v are distinguished by L (because u is only adjacent to vertices in
Lyu L;H), If v; € Ly, then u, w are distinguished by L{" where Lj is a partition class distinguishing v;, x;,,.; with
J€[1,n]in S (K, ). Hence, we have r(u|Il"”) = r(w|II'"). As consequences, I1” is a resolving partition of §(G"’), so

pd(S(G") < p+ 1. O
Theorem 17. Ifn 29, then pd(S(K.)) < [5].

Proof. Consider S (Kg) with IT = {Ly, Ls, L3, L4} be a partition of V(S (K,)) with L;=L; where L; is the partition class
of IT" on the Theorem 15. We can see that IT satisfies the condition in Lemma 16. Furthermore, the partition class
L4 satisfies d(v;,Ls) < 1 for all i € [1, 8], Hence, by the constructions in Lemma 16, we obtain pd{$(Ky)) < 5 and
pd(S(Kp)) = 5. Now, repeat the same process recursively to obtain pd(S(K,)) = [2] forn = 9.
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