B1 *by* Adhitya Wisnu

Submission date: 16-May-2022 03:58PM (UTC-0500)

Submission ID: 1837856245

File name: Lampiran_B1.pdf (1.02M)

Word count: 2738

Character count: 14117

Home > Vol. 4 No. 2 Desember 2021

EIGEN MATHEMATICS JOURNAL

Eigen Mathematics Journal publishes articles which contribute to new information or knowledge related to:

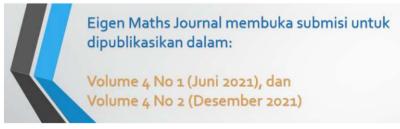
- · Mathematical Analysis,
- Algebra,
- Applied Mathematics,
- · Statistics, and
- Computational Mathematics.

Moreover, this journal also publishes surveys in the aforementioned areas in order to introduce recent development and to stimulate further research. All articles published in this journal are available for FREE.

Do you want to submit an article?

Announcements

Penerimaan Artikel Tahun 2020



Posted: 2021-01-09

More Announcements..

Vol. 4 No. 2 Desember 2021

Table of Contents

Articles

Pipeline Network Optimization using Hybrid Algorithm between Simulated Annealing and Genetic Algorithms DOI:10.29303/emj.v4i2.100	30-39
Author(s): Parizal Hidayatullah, Irwansyah Irwansyah, Qurratul Aini, Bulqis Nebula Syechah	

| Statistics: 36 view, 21 download

Comparison of Fuzzy Time Series Methods and Autoregressive Integrated Moving Average (ARIMA) for Inflation Data DOI:10.29303/emj.v4i2.122

Author(s): Asyifah Qalbi, Khalilah Nurfadilah, Wahidah Alwi

| Statistics: 44 view, 30 download

Hill Cipher Algorithm with Generalized Fibonacci Matrix in Message Encoding DOI:10.29303/emj.v4i2.107

Author(s): Husni Fitroti, Mamika Ujianita Romdhini, Ni Wayan Switrayni

| Statistics: 28 view, 13 download

Submit Article

Focus and Scope

Review Process

Plagiarism Policy

Publication Fees

Visitor Statistics

KEYWORDS

Assignment Problem Course Distribution Genetic Algorithms Hungarian Method L-

System Lecturer MAPE Mean Absolute Percentage Error (MAPE) Mix Integer Linear

Programming Multiple Linear Regression Nadaraya-Watson estimator Procrustes

Time Series bandwidth preferences simulated annealing algorithm system variables

USER

Username Password

☐ Remember me

Login

Plagiarism checker

View Journal Stats

Total visitors:

00011766

51-59

40-50

ranei pata kegression analysis ol numan pevelopment muex in west ivusa renggara 60-67 Province with Fixed Effect Model DOI:10.29303/emj.v4i2.114 Author(s): Sapurah Sapurah, I Gde Ekaputra Gunartha, Nurul Fitriyani | Statistics: 32 view, 13 download The Intersection Graph of a Dihedral Group 68-73 DOI:10.29303/emj.v4i2.119 Author(s): Nurhabibah Nurhabibah, Abdul Gazir Syarifudin, I Gede Adhitya Wisnu Wardhana, Qurratul Aini | Statistics: 65 view, 39 download **Fuzzy Metric Space and Its Topological Properties** PDF 74-79 DOI:10.29303/emj.v4i2.95 Author(s): Masriani Masriani, Qurratul Aini, Syamsul Bahri | Statistics: 19 view, 7 download The Power Graph of a Dihedral Group PDF 80-85 DOI:10.29303/emj.v4i2.117 Author(s): Evi Yunartika Asmarani, Abdul Gazir Syarifudin, I Gede Adhitya Wisnu Wardhana, Ni Wayan Switrayni | Statistics: 61 view, 24 download

This work is licensed under a Creative Commons Attribution 4.0 International License. Preserved in LOCKSS, based at Stanford University Libraries, United Kingdom, through PKP Private LOCKSS Network program.

Indexed by:

e-ISSN: 2615-3270 | | p-ISSN: 2615-3599

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS EDITORIAL TEAM REVIEWERS AUTHOR GUIDELINES

Home > About the Journal > Editorial Team

Editorial Team

Editor-in-Chief

Irwansyah -, (Scopus ID: 56180688500) Universitas Mataram, Indonesia

Editorial Board

Nurul Fitriyani, (Scopus ID: 57213687577) Universitas Mataram, Indonesia Ni Wayan Switrayni, (Scopus ID: 57222371573) Universitas Mataram, Indonesia Abdurahim Abdurahim, Politeknik Medica farma husada mataram, Indonesia

Managing Editor

Qurratul Aini, Universitas Mataram, Indonesia

Assistant Editor

Agus Kurnia, Universitas Mataram, Indonesia

This work is licensed under a Creative Commons Attribution 4.0 International License. Preserved in LOCKSS, based at Stanford University Libraries, United Kingdom, through PKP Private LOCKSS Network program.

Indexed by:

e-ISSN: 2615-3270 || p-ISSN: 2615-3599

Submit Article

Focus and Scope

Review Process

Open Access Policy

Publication Ethics

Plagiarism Policy

Publication Fees

Visitor Statistics

KEYWORDS

Assignment Problem Course Distribution Fossil oil Generalized Cross-Validation Genetic Algorithms Hungarian Method L-System Lecturer MAPE Mean Absolute Percentage Error (MAPE) Mix Integer Linear Programming Multiple Linear Regression Nadaraya-Watson estimator Procrustes Time Series bandwidth preferences simulated annealing algorithm system variables

USER

Username
Password
Remember me
Login

Plagiarism checker

View Journal Stats

Total visitors:

00011766

Eigen Mathematics Journal

Homepage jurnal: http://eigen.unram.ac.id

The Intersection Graph of a Dihedral Group

Nurhabibah^a, Abdul Gazir Syarifudin^b, I Gede Adhitya Wisnu Wardhana^{c*}, Qurratul Aini^d

"Universitas Mataram, Jl. Majapahit No 62, Mataram, 83125, Indonesia. Email: habibahmtk05@gmail.com

bInstitut Teknologi Bandung, Jl. Ganesa No 10, Bandung, 40132, Indonesia. Email: 20121015@mahasiswa.itb.ac.id

cUniversitas Mataram, Jl. Majapahit No 62, Mataram, 83125, Indonesia. Email: adhitya.wardhana@unram.ac.id

dUniversitas Mataram, Jl. Majapahit No 62, Mataram, 83125, Indonesia. Email: qurratulaini.aini@unram.ac.id

ABSTRACT

The intersection graph of a finite group G is a graph (V, E) where V is a set of all non-trivial subgroups of G and E is a set of edges where two distinct subgroups H_i, H_j are said to be adjacent if and only if $H_i \cap H_j \neq \{e\}$. This study discusses the intersection graph of a dihedral group D_{2n} specifically the subgraph, degree of vertices, radius, diameter, girth, and domination number. From this study, we obtained that if $n = p^2$ then the intersection graph of D_{2n} is containing complete subgraph K_{p+2} and $\gamma(\Gamma_{D_{2n}}) = p$.

Keywords: The intersection graph, dihedral group, subgraph

ABSTRAK

Graf irisan dari grup dihedral D_{2n} adalah graf (V, E) dengan V adalah himpunan semua subgrup non-trivial dari grup dihedral D_{2n} dan E adalah himpunan sisi dengan dua simpul berbeda H_i, H_j dikatakan bertetangga jika dan hanya jika $H_i \cap H_j \neq \{e\}$. Penelitian ini membahas graf irisan dari grup dihedral meliputi bentuk graf, derajat simpul graf, radius, diameter, girth, dan bilangan dominasi graf. Beberapa hasil yang diperoleh adalah jika $n = p^2$ maka graf irisan grup D_{2n} mengandung subgraf lengkap K_{p+2} dan $\gamma(\Gamma_{D_{2n}}) = p$.

Keywords: graf irisan, grup dihedral, subgraf

Diserahkan: 24-09-2021; Diterima: 30-12-2021;

____1

Doi:https://doi.org/10.29303/emj.v4i2.119

1. Pendahuluan

Graf dapat digunakan sebagai representasi dari suatu grup, ring atau modul. Ada banyak jenis representasi grup menggunakan graf. Contohnya graf oprima yang digunakan untuk merepresentasikan grup bilangan bulat modulo (Juliana dkk.,2020), grup dihedral (Syarifudin dkk., 2021), atau grup generalized quartenion (Nurhabibah dkk., 2021).

NURHABIBAH, SYARIFUDIN, WARDHANA, AINI 69

Selain itu terdapat graf na koprima yang digunakan untuk merepresentasikan grup bilangan bulat modulo (Masriani dkk., 2020) atau grup dihedral (Misuki dkk.,2021). Penelitian ini memberikan representasi lain dari grup dihedral yang dinamakan graf irisan. Beberapa sifat graf irisan dari grup dihedral didapatkan untuk n bilangan prima, n kuadrat bilangan prima, dan n perkalian dua bilangan prima berbeda. Berikut beberapa definisi yang diperlukan dalam penelitian ini.

Definisi 1.1 (Dummit dan Foote, 2004)

Grup G dikatakan grup dihedral dengan order 2n, $n \ge 3$ dan $n \in N$, adalah grup yang dibangun oleh dua elemen $a, b \in G$ dengan sifat

$$G = \langle a, b | a^n = e, b^2 = e, bab^{-1} = a^{-1} \rangle$$

Grup dihedral dengan order 2n disimbolkan dengan D_{2n} .

Dari definisi 1.1 ini mudah dilihat bahwa $|D_{2n}|=2n$ dan D_{2n} dapat dituliskan sebagai himpunan yaitu $D_{2n}=\{e,a,a^2,\ldots,a^{n-1},b,ab,a^2b,\ldots,a^{n-1}b\}.$

Definisi 1.2 (Fraleigh, 2014)

Jika suatu subhimpunan H dari grup G tertutup di bawah operasi biner yang sama dengan G dan merupakan grup di bawah operasi yang sama dengan G, maka H merupakan subgrup dari G. Salah satu jenis subgrup adalah subgrup non-trivial, subgrup nontrivial didefinisikan sebagai subgrup yang terdiri dari selain dirinya sendiri dan identitasnya.

2. Metode

Penelitian ini merupakan penelitian dengan studi literatur yaitu penelitian yang dilakukan dengan mempelajari sejumlah referensi yang berhubungan dengan topik yang diangkat penulis. Proses penelitian dilakukan dengan membaca, memahami dan menganalisis tentang grup dihedral D_{2n} , subgrup nontrivial grup dihedral, graf irisan, sifat-sifat graf dan hal-hal lain yang mendukung penelitian ini.

3. Hasil dan Pembahasan

Graf irisan merupakan salah satu jenis graf aljabar dengan definisi sebagai berikut.

Definisi 3.1 (Shahsavari, dkk., 2017)

Misalkan G grup hingga, graf irisan dari G dinotasikan dengan Γ_G adalah graf tak-berarah dengan simpul yang terdiri dari semua subgrup non-trivial dari G dan dua simpul berbeda H dan K bertetangga jika dan hanya jika $H \cap K \neq \{e\}$.

Dalam mengkonstruksi graf irisan dari grup dihedral, diperlukan seluruh subgrup non-trivial dari grup tersebut. Grup dihedral memiliki minimal dua dari tiga jenis subgrup, yaitu subgrup rotasi, subgrup refleksi dan subgrup campuran (Syarifudin & Wardhana, 2019). Berikut Teorema yang menjelaskan subgrup tersebut.

Teorema 3.1 (Gazir & Wardhana, 2019)

Misalkan D_{2n} grup dihedral dan $x \in D_{2n}$ dengan $n \ge 3$. Jika $R = \{e, a, a^2, a^3, ..., a^{n-1}\} \subseteq D_{2n}$ maka R subgrup non-trivial dari D_{2n} .

Teorema 3.2 (Gazir & Wardhana, 2019)

Misalkan D_{2n} grup dihedral dan $x \in D_{2n}$ dengan $n \ge 3$. Jika $S_i = \{e, a^i b\} \subseteq D_{2n}$ dimana i = 0, 1, 2, ..., n - 1 maka S adalah subgrup non-trivial dari D_{2n} .

Teorema 3.3 (Gazir & Wardhana, 2019)

Diberikan D_{2n} grup dihedral dengan $n \ge 3$ dan $n = p_1p_2 \dots p_k$ dengan p_i bilangan prima, maka $R_i = \{e, a^{p_i}, a^{2p_i}, \dots, a^{n-p_i}\}$ adalah subgrup non-trivial dari D_{2n} .

Teorema 3.4 (Gazir & Wardhana, 2019)

Diberikan D_{2n} grup dihedral dengan $n \ge 3$ dan $n = p_1p_2 \dots p_k$ dengan p_i bilangan prima berbeda. Untuk $i \in \{1, 2, \dots, k\}$ dan $j \in \{0, 1, 2, \dots, p_i - 1\}$, $G_{ij} = \{e, a^{p_i}, a^{2p_i}, \dots, a^{n-p_i}, a^jb, a^{j+p_i}b, \dots, a^{j+n-p_i}b\}$ subgrup non-trivial dari D_{2n} .

Pada penelitian ini, grup dihedral direpresentasikan dalam graf irisan. Berikut diberikan graf irisan untuk n=3, yakni grup dihedral $D_6=D_{2.3}$ $D_{2.3}=\{e,a,\alpha^2,b,ab,a^2b\}$

Tabel 3.1 Subgrup non-trivial dari $D_{2,3}$

Tabel 3.1 Subgrup non-trivial dari $D_{2.3}$	
Subgrup rotasi	$H_1 = \{e, a, a^2\}$
Subgrup refleksi	$H_2 = \{e, b\}$
	$H_3 = \{e, ab\}$
	$H_4 = \{e, a^2b\}$
H_1	H_2

 (H_4)

Gambar 3.1 Graf irisan dari D2.3

Dengan langkah yang sama seperti contoh di atas, dapat diperoleh graf irisan dari grup dihedral D_{2n} dengan n bilangan prima merupakan graf kosong dengan n+1 simpul, dan dinotasikan dengan N_{n+1} . Hasil ini dijelaskan dalam Teorema berikut.

Teorema 3.5

Jika D_{2n} grup dihedral dengan n=p, maka graf irisan D_{2n} merupakan graf kosong N_{n+1} .

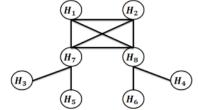
Bukti.

Misalkan D_{2n} grup dihedral. Ambil n=p bilangan prima sebarang. Subgrup non-trivial dari D_{2n} adalah subgrup rotasi yaitu $\{e,a,a^2,a^3,...,a^{n-1}\}$ dan subgrup refleksi dengan bentuk $S_i=\{e,a^ib\}$ untuk setiap i=0,1,2,...,n-1. Dengan demikian, diperoleh bahwa D_{2n} memiliki n+1 buah subgrup non-trivial, artinya $\Gamma_{D_{2n}}$ memiliki n+1 buah simpul. Ambil H,K subgrup non-trivial sebarang dari D_{2n} dengan $H\neq K$ maka diperoleh $H\cap K=\{e\}$. Jadi, $\Gamma_{D_{2n}}$ merupakan graf kosong dengan n+1 simpul, atau ditulis N_{n+1} .

Selanjutnya diberikan contoh graf irisan dari D_{2n} untuk n kuadrat bilangan prima, misal n=4 sebagai berikut.

Tabel 3.2 Subgrup non-trivial $D_{2.4}$

Subgrup rotasi	$H_1 = \{e, a, a^2, a^3\} H_2 = \{e, a^2\}$
Subgrup	$H_3 = \{e, b\}, H_4 = \{e, ab\},\$
refleksi	$H_5 = \{e, a^2b\}, H_6 = \{e, a^3b\}$
Subgrup	$H_7 = \{e, a^2, b, a^2b\}$
campuran	$H_8 = \{e, a^2, ab, a^3b\}$
	(H.) (H.)



Gambar 3.2 Graf irisan D2.4

Graf pada Gambar 3.2 memiliki subgraf lengkap K_4 dan 2 buah subgraf bintang $K_{1,2}$. Dengan langkah yang sama seperti contoh diatas, dapat diperoleh graf irisan dari grup dihedral D_{2n} ketika $n = p^2$ memiliki subgraf lengkap dan subgraf bintang. Berikut teorema yang menjelaskannya.

Teorema 3.6

Jika D_{2n} grup dihedral dengan $n=p^2$, maka $\Gamma_{D_{2n}}$ memiliki subgraf lengkap K_{p+2} .

Bukti.

Misalkan D_{2n} grup dihedral. Ambil $n=p^2$ dengan p bilangan prima sebarang. D_{2p^2} memiliki dua buah subgrup rotasi, yaitu $R_1=\{e,a,a^2,a^3,...,a^{n-1}\}$ dan $R_2=\{e,a^p,a^{2p},...,a^{n-p}\}$, p^2 buah subgrup refleksi yaitu $S_i=\{e,a^ib\}$ untuk $i=0,1,2,...,p^2-1$ dan p buah subgrup campuran, yaitu $C_j=\{e,a^p,a^{2p},...,a^{n-p},a^jb,a^{j+p}b,...,a^{j+n-p}b\}$ untuk j=0,1,2,...,p-1. Setiap H,K subgrup rotasi atau campuran yang berbeda, berlaku $H\cap K\neq \{e\}$, artinya H dan K selalu bertetangga. Dengan demikian subgrup rotasi dan campuran membentuk subgraf lengkap dari $\Gamma_{D_{2n}}$, yaitu subgraf K_{p+2} .

NURHABIBAH, SYARIFUDIN, WARDHANA, AINI 71

Selain subgraf lengkap, $\Gamma_{D_{2n}}$ dengan $n=p^2$ juga memiliki subgraf bintang. Berikut teorema yang menjelaskannya.

Teorema 3.7

Jika D_{2n} grup dihedral dengan $n = p^2$, maka $\Gamma_{D_{2n}}$ memiliki p buah subgraf bintang $K_{1,p}$.

Bukti.

Misalkan D_{2n} grup dihedral. Ambil $n=p^2$ untuk suatu p bilangan prima sebarang. Dalam pembuktian Teorema 3.6, diperoleh subgrup-subgrup non-trivial dari D_{2n} . Misalkan $P_1=\{C_j\}$ untuk suatu j=0,1,2,...,p-1 sebagai partisi pertama dan $P_2=\{S_j,S_{p+j},S_{2p+j},...,S_{(p-1)p+j}\}$ untuk suatu j=0,1,2,...,p-1 sebagai partisi kedua. Selanjutnya, untuk setiap $H_1,H_2\in P_2$ berlaku $H_1\cap H_2=\{e\}$ dan untuk setiap $K\in P_2,\ H\in P_1$ berlaku $H\cap K\neq \{e\}$. Dengan demikian, $\Gamma_{D_{2n}}$ memliki subgraf bintang $K_{1,p}$. Selanjutnya karena j=0,1,2,...,p-1 maka banyak subgraf bintang dengan bentuk seperti ini adalah p buah.

Pembahasan selanjutnya adalah bilangan dominasi graf. Bilangan dominasi graf didefinisikan sebagai berikut.

Definisi 3.2 (Murugesan dan Nair, 2011)

Misalkan H = (V, E), $D \subseteq V$ disebut himpunan dominasi jika untuk setiap simpul di $V \setminus D$ bertetangga dengan minimal sebuah simpul di D. Bilangan dominasi adalah kardinalitas minimal dari himpunan dominasi dan dinotasikan dengan $\gamma(H)$.

Berdasarkan Gambar 3.2, diperoleh bahwa $D = \{H_7, H_8\}$ merupakan himpunan dominasi graf. Himpunan D merupakan himpunan dominasi dengan kardinalitas minimal karena graf tersebut tidak memiliki himpunan dominasi dengan kardinalitas 1. Jadi bilangan dominasi graf pada Gambar 3.2 adalah 2. Berikut ini diberikan Teorema yang menjelaskan

bilangan dominasi graf irisan dari grup dihedral untuk n merupakan kuadrat bilangan prima.

Teorema 3.8

Jika $n=p^2,\ p$ bilangan prima, serta D_{2n} grup dihedral, maka $\gamma \left(\Gamma_{D_{2n}} \right) = p.$

Bukti.

Misalkan D_{2n} grup dihedral. Ambil $n = p^2$ untuk suatu p bilangan prima sebarang. Dalam pembuktian Teorema 3.6, diperoleh subgrup-subgrup non-trivial dari D_{2n} . Misalkan pula $D = \{C_0, C_1, ..., C_{p-1}\}$, akan dibuktikan bahwa $V(\Gamma_{D_{2n}})\backslash D$ didominasi oleh D. Berdasarkan bukti pada Teorema 3.7, diperoleh bahwa setiap subgrup C_i bertetangga dengan p buah subgrup refleksi, artinya setiap subgrup refleksi didominasi oleh D. Selanjutnya, subgrup R₁ dan R₂ bertetangga dengan subgrup C_j untuk setiap j = 0, 1, ..., p - 1. Jadi terbukti bahwa D merupakan himpunan dominasi $\Gamma_{D_{2n}}$ dengan kardinalitas p. Perhatikan bahwa untuk setiap H_1, H_2 subgrup campuran dari D_{2n} berlaku $H_1 \cap H_2 =$ R_2 , Ambil $H = S_i$ untuk suatu $i = 0, 1, ..., n - 1, H \cap$ $K = S_i \neq \{e\}$ hanya dipenuhi oleh tepat satu buah subgrup campuran K. Dengan kata lain, Si memiliki derajat 1 untuk setiap i = 0, 1, ..., n - 1. Akibatnya, himpunan dominasi dari graf $\Gamma_{D_{2n}}$ minimal harus mengandung semua subgrup campuran dari D_{2n} . Jadi terbukti bahwa D merupakan himpunan dominasi dengan kardinalitas minimal yaitu p atau $\gamma(\Gamma_{D_{2n}}) =$

p. ■

Selanjutnya jika memilih grup dihedral D_{2n} dengan n bilangan komposit yang merupakan perkalian dua buah bilangan prima berbeda, maka diperoleh beberapa teorema sifat graf irisan dari D_{2n} . Teorema 3.9 berikut menjelaskan tentang bilangan dominasi graf tersebut.

Teorema 3.9

Jika D_{2n} grup dihedral dengan $n=p_1p_2$ dengan $p_1\neq p_2$, $p_1< p_2$ untuk suatu bilangan prima, maka γ ($\Gamma_{D_{2n}}$)= p_1+1

Bukti

Misalkan D_{2n} grup dihedral. Ambil $n = p_1p_2$ dengan $p_1 \neq p_2$ untuk suatu p_1, p_2 bilangan prima dan $p_1 <$ p_2 . Subgrup non-trivial dari D_{2n} adalah subgrup rotasi $R_1 = \{e, a, a^2, ..., a^{n-1}\}, R_2 =$ $\{e, a^{p_1}, a^{2p_1}, \dots, a^{n-p_1}\},\$ $R_3 =$ $\{e,a^{p_2},a^{2p_2},\ldots,a^{n-p_2}\}$, subgrup refleksi yaitu $S_i=$ $\{e, a^i b\}$ untuk i = 0, 1, 2, ..., n - 1 dan subgrup campuran, yaitu $\{e, a^{p_1}, a^{2p_1}, \dots, a^{n-p_1}, a^j b, a^{j+p_1} b, \dots, a^{j+n-p_1} b\}$ $j = 0, 1, 2, ..., p_1 - 1$ $\{e, a^{p_2}, a^{2p_2}, \dots, a^{n-p_2}, a^k b, a^{k+p_2} b, \dots, a^{k+n-p_2} b\}$ $k = 0, 1, 2, ..., p_2 - 1.$ Pilih $\{C_0, C_1, \dots, C_{p_1-1}, R_1\}$, pertama akan ditunjukkan bahwa D merupakan himpunan dominasi. Perhatikan bahwa salah satu kondisi yang menyebabkan $S_i \cap$ $C_i \neq \{e\}$ adalah i = j, artinya setiap subgrup refleksi Si dipastikan bertetangga dengan minimal sebuah simpul pada D. Selanjutnya, $R_2 \cap R_1 \neq \{e\}$, $R_3 \cap$ $R_1 \neq \{e\}$, dan $D_k \cap R_1 = R_3 \neq \{e\}$. Dengan kata lain, R_1 bertetangga dengan R_2 , R_3 dan D_k . Jadi terbukti bahwa D merupakan himpunan dominasi. Selanjutnya, akan dibuktikan bahwa D merupakan himpunan dominasi dengan kardinalitas minimal. Karena $S_i \cap$ $H \neq \{e\}$ dengan $S_i \neq H$ hanya mungkin dipenuhi oleh H yang merupakan subgrup C_i atau D_k , maka pada himpunan dominasi haruslah mengandung subgrup campuran. Subgrup campuran yang terdapat pada D merupakan subgrup campuran minimal sehingga himpunan subgrup tersebut mendominasi seluruh subgrup refleksi, hal ini karena diketahui $p_1 < p_2$. Selanjutnya, karena dengan memilih satu subgrup saja

yaitu R_1 setiap subgrup campuran dan subgrup rotasi yang tidak terdapat dalam D bertetangga dengan R_1 , maka dapat disimpulkan bahwa D merupakan himpunan dominasi dengan kardinalitas minimal. Dengan kata lain, bilangan dominasi graf adalah $p_1 + 1$ atau $\gamma(\Gamma_{D_{2n}}) = p_1 + 1$.

Sifat terakhir yang diperoleh adalah tentang bilangan kebebasan graf. Bilangan kebebasan graf didefinisikan sebagai berikut.

Definisi 3.3 (Murugesan dan Nair, 2011)

Misalkan $H = (V, E), I \subseteq V$ disebut himpunan kebebasan graf G jika tidak terdapat simpul-simpul di I yang bertetangga. Kardinalitas maksimal dari himpunan kebebasan disebut bilangan kebebasan dari graf H dan dinotasikan dengan $\beta(H)$.

Bilangan kebebasan graf irisan dari D_{2n} dijelaskan dalam teorema berikut.

Teorema 3.10

Jika D_{2n} grup dihedral dengan $n=p_1p_2$ dengan $p_1\neq p_2$ suatu bilangan prima, maka $\beta(\Gamma_{D_{2n}})=p_1p_2+2$

Bukti.

Misalkan D_{2n} grup dihedral. Ambil $n=p_1p_2$ dengan $p_1 \neq p_2$ untuk suatu p_1, p_2 bilangan prima. Dalam pembuktian Teorema 3.9 diperoleh subgrup nontrivial dari D_{2n} . Apabila diperhatikan, untuk S_x, S_y dengan $x \neq y$ berlaku $S_x \cap S_y = \{e\}$, dengan kata lain $B = \{S_0, S_1, \dots, S_n\}$ merupakan himpunan kebebasan bagi $\Gamma_{D_{2n}}$. Selanjutnya, perhatikan bahwa $R_2 \cap R_3 = \{e\}$, artinya $R = \{R_2, R_3\}$ juga merupakan himpunan kebebasan bagi $\Gamma_{D_{2n}}$. Dapat dilihat bahwa $K_1 \cap K_2 = \{e\}$ untuk setiap $K_1 \in B$ dan $K_2 \in R$, dengan demikian $B \cup R$ merupakan himpunan kebebasan bagi $\Gamma_{D_{2n}}$ dengan $|B \cup R| = p_1p_2 + 2$. Apabila suatu simpul ditambahkan dalam $B \cup R$, dapat dipastikan minimal terdapat dua buah simpul yang bertetangga. Dengan demikian $B \cup R$ merupakan himpunan kebebasan

dengan kardinalitas maksimal atau bilangan kebebasan graf adalah p_1p_2+2 atau β ($\Gamma_{D_{2n}}$)= p_1p_2+2 .

4. Kesimpulan

Beberapa kesimpulan yang diperoleh dari penelitian ini adalah sebagai berikut.

- 1. Jika D_{2n} grup dihedral dengan $n=p^2$, maka $\Gamma_{D_{2n}}$ memiliki subgraf lengkap K_{p+2} .
- 2. Jika $n=p^2, p$ bilangan prima, serta D_{2n} grup dihedral, maka $\gamma(\Gamma_{D_{2n}})=p$.
- 3. Jika D_{2n} grup dihedral dengan $n=p_1p_2$ dengan $p_1 \neq p_2$, $p_1 < p_2$ untuk suatu bilangan prima, maka $\gamma(\Gamma_{D_{2n}})=p_1+1$
- 4. Jika D_{2n} grup dihedral dengan $n=p_1p_2$ dengan $p_1 \neq p_2$ suatu bilangan prima, maka $\beta\left(\left.\Gamma_{D_{2n}}\right) = p_1p_2 + 2\right.$

Daftar Pustaka

- David, S Dummit, and Foote, Richard M. 2004. Abstract Algebra. New Jersey: Division of Simon & Schauster, Inc.
- Fraleigh, J. B. 2014. A First Course in Abstract Algebra, Seventh Edition. United States of America: Pearson Education Limited.
- Gazir, A. S., Wardhana, I G. A. W. 2019. Subgrup Nontrivial dari Grup Dihedral. Eigen Mathematic Journal, Vol.2 No.2.
- Juliana, R., Masriani, Wardhana, I.G.A.W., Switrayni, N.W., and Irwansyah, 2020, Coprime graph of integers modulo n group and its subgroups, Journal of Fundamental Mathematics and Applications (JFMA) 3 (1), 15-18.
- Masriani, Juliana, R., Syarifudin, A.G., Wardhana, I.G.A.W., Irwansyah, and Switrayni, N.W., 2020, Some Result of Non-Coprime Graph of Integers Modulo n Group for n a Prime Power, Journal of Fundamental Mathematics and Applications (JFMA) 3 (2), 107-111.

- Misuki, W.U., Wardhana, I.G.A.W., Switrayni, N.W., and Irwansyah, 2021, Some Results of Non-Coprime Graph of The Dihedral Group D_{2n} for n a Prime Power, AIP Conference Proceedings 2329, 020005 (2021).
- Murugesan, N., D.S. Nair. 2011. The Domination and Independence of Some Cubic Bipartite Graphs. *International Journal Contemporer* Math Sciences, Vol.6. No. 13.
- Nurhabibah, Syarifudin, A.G., and Wardhana, I.G.A.W., 2021, Some Results of The Coprime Graph of a Generalized Quaternion Group Q_{4n} , Indonesian Journal of Pure and Applied Mathematics 3 (1), pp. 29-33
- Shahsavari, H., B. Khosravi. 2017. On The Intersection Graph of a Finite Group. Czechoslovak Mathematical Journal, Vol. 67 No. 4.
- Syarifudin, A.G., Nurhabibah, Malik, D.P. and, Wardhana, I.G.A.W., Some characterizatsion of coprime graph of dihedral group D_{2n}, J. Phys.: Conf. Ser. 1722, 012051.
- Syarifudin A.G., and Wardhana, I.G.A.W., 2021, Beberapa Graf Khusus Dari Grup Quaternion, Eigen Mathematics Journal 4 (1), pp. 1-7.

B1

ORIGINALITY REPORT

%
SIMILARITY INDEX

7%
INTERNET SOURCES

0% PUBLICATIONS

U% STUDENT PAPERS

PRIMARY SOURCES

eigen.unram.ac.id
Internet Source

7%

Exclude quotes

On

Exclude matches

< 3%

Exclude bibliography On