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Abstract.A graph of a finite group G whose vertices are all elements of G except the identity element, and edges
defined as (u,v) € E(G) if and only if (Jul, |v|) # 1 is called a non-coprime graph of G and denoted by Ty. In this
paper we give some properties of non-coprime graphs of a dihedral group D,,,, when n is a prime power. One main
result of this paper shows that T is either a complete graph or can be partitioned into two complete graphs.

INTRODUCTION

The non-coprime graph was first introduced by Mansori [1] who gave some of its characterizations. The
non-coprime graph is a dual represetation of the coprime graph that introduced by Ma [2]. Other authors also
studied graph representation of groups especially on coprime graph such as on dihedral group by Gazir [3] and
on group of integer modulo by Juliana [4].

In this paper we use the results of Gazir [3] on the coprime graph of dihedral group to find its dual
representation graph, the non-coprime graph of the dihedral group D,,,, where n is a prime power.

Definition 1. [3] A graph is an ordered set(V, E) comprising:
i The set V' is non-empty set of vertices
ii.  The set E is edge set of a pair vertices, E € {(v,w) € V?}

Two vertices v; v; are said to be neighbors or adjacent if (vi,vj) € E. A graph is called an undirected
graph if (x,y) = (y,x) for every (x,y) € E, and called a simple graph if every edge (x,y) € E is unique and
x # . Inthis paper we only consider an undirected simple graph.

Definition 2. [3] An undirected simple graph G = (V,E) is called a complete graph if for every x,y € V, then
(x,y) €EE.

A mathematical system with a binary operation is called a group if it satisfies four conditions, namely
closure, associativity, identity and invertibility.

Definition 3. [5] A nonempty set G is said to be a group if in G there is defined a binary operation, called the
product and denoted by * such that, for any a, b, ¢ € G then
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i a,b € G implies that a * b € G (closed).

ii. ax* (b *c) = (a=*b) = c (associative law).

iil. There exists an element e € G such that a xe = e *a = a for all a € G (the existence of an identity
element).

iv. For every a € G there exists an element a™! € G such that a * a™* = a™ * a = e (the existence of
inverse).

If (G.*) is a group that satisfies a commutative property, that is for any a,b € G, we have a * b = b *
a, then (G.*) is called a commutative group or an abelian group. A non-empty subset H of a group G is said to
be a subgroup of G if H is a group under the same operation on G. If |H| is finite, it is easy to check that whether
H is a subgroup or not. But if |H| is infinite, then we can check whether H is a subgroup or not using the
following theorem.

Theorem 1. [5] Let H be a non-empty subset of a group G. Subset H is a subgroup of G if and only if ab™! €
H,foranya,b € H.

A way to represent a group into a graph is by describing it by the order of every element of the group.
The order of a group’s element is given by the following definition.

Definition 4. [5] Suppose (G.*) is any group. Let a be any element of G. The smallest positive integer m that
satisfies a™ = e is said as an order of a, and denoted as |a| = m.

One of the most interesting groups is dihedral group, which is a group of symmetries of a regular
polygon consisting of rotations and reflections. Dihedral groups are playing an important role in group theory,
geometry, and chemistry.

Definition 5. [5] The dihedral group with order 2n, denoted by D,,, is the set:
D,, ={e,a,a?, ..,a" %, b,ab,a?b,...,a" h|a™ = b? = e,a”! = bab}forn = 3.

By definition, we can find the order of every element of the dihedral group, depending on n. For any
natural number n, there always exists an element with order 2.

Theorem 2. [5] Let Dy, = {e,a,a?,...,a™ 1, b,ab,a®b,...,a" 1b|a"™ = b?> = e,a”! = bab}, then|b| = |ab| =
o= |a" | =2

Gazir and Wardhana [5] found the characterizations of subgroup of a dihedral group in the following
Theorems:

Theorem 3. [5] Let D,,be the dihedral group with n = 3. If S = {e,a,a?,a" 1} E D,, then S is a
nontrivial subgroup of D,,,.

Theorem 4. [5] Let D,,be the dihedral group with n > 3.IfS = {e,a’h} € D,, where i = 0,1,2,-~-,n — 1 then
S is a non-trivial subgroup of D,,,.

Theorem 5. [5] Let D,,be the dihedral group with n > 3. If n is composite wheren = p;p, -+ p, then
S = {e,aPi, a?Pi,--,a""Pi} € D,, is a non-trivial subgroup of D,,,.

Mansori [1] gave the definition of non coprime graph of a group based on the order of every element of
the group. We denote that the order of element x of a group as |x| (look at Def 4).

Definition 6. [3] Let Gbe a finite group. Non-coprime graph of group G, denoted by T} is a graph with its
vertices consist of G — {e} and two different vertices u,vare said to be adjacent if(Ju |, [v]) # 1.
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MAIN RESULTS

The non-coprime graph of D,, is a complete graph or can be partitioned into two complete graphs
whenever n is a prime power.

If n is a power of even prime then the non-coprime graph of D,,, is a complete graph, as shown in the
following theorem.

Theorem 6. Let D,,,be the dihedral group. If n = 2™ for some m € N, then I}, is a complete graph.

Proof. Since n = 2™, then we have the order of D,,, is 2™*1, hence the order of every non-identity element of
D,,, must be divided by 2.Then for any non-identity x, € D,,, we have (|x|,| | = 2* for some k € N, hence
x,y are neighbors, then I, is a complete graph. [

If n is a power of an odd prime then the non-coprime graph of D,,,can be partitioned into two complete
graphs.

Theorem 7. Let D,,be the dihedral group. If n = p™ for some m € N and p is an odd prime. Then I, can be
partitioned into two disjoint complete graphs.

Proof. Let split D,, — {e} into two disjoint sets G; = {a,a?, ...,a?" ~'}and G, = {b,ab, ...,aP" ~'bh}. We have
p divides the order of any x € G; and 2 divides the order of any y € G, since x and y are rotation and
reflection elements, respectively. So we have every two elements in G; are neigbors for i = 1,2. Since p is
odd prime then for any x € G; and y € G,, we have (|x|,|y]) = 1. Hence x and cannot be neighbors,
Therefore E can be partitioned into two disjoint complete graphs.[]

Subgroups of dihedral groups can be grouped into two types, that are trivial subgroups and non-trivial
subgroups. Obviously, the graph from a trivial subgroup of D,,, satisfies the previous theorem.

These are all non-trivial subgroups of dihedral groups according to Gazir and Wardhana [5].

S={eaa?,a" 1}
S ={e,a'b} wherei = 0,1,2,,n—1
S = {e, aPi, a?Pi .-, a"Pi } where n = pflpé‘z pf;m

RS T S B

@ . @ R
S = {e, a{n(i=1}p]i},...‘ a{” Ml yypsi) L a’b, a{q+n(i=1}p1i}b,..., a{‘“" H{i=1}p1i}}‘ where 1< t < m and

0<g<n-1.

It is easy to check that when n is a prime then all the non-trivial subgroups are only the first two
subgroups. In general, the non-coprime graph of any subgroup of D, is either a trivial graph or a complete

graph.
Theorem 8. Let S be a non trivial subgroup of dihedral group D,,,. If n = p™ then the non-coprime graph
of S is a trivial graph or a complete graph or can be partitioned into two complete graphs.

Proof. Obviously for § = {e, aib}where i=0,1,2,,n—1,T§is a trivial graph.
So we have three cases left.

Case1: S ={e,a,a? a1}
The order of any non-identity element of S must be divided by p, hence every non identity element of S must be
neighbors. Then I is a complete graph.

i i i .
Case2: S ={ea?,a®” ,,a" P} wherei=12,,m.

Similar to case 1, we have the order of any non-identity element of S must be divided by p, then we can
conclude that [ is a complete graph.
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{t} {t} {t} {t}
Case3: S = {e, alMitsy )} a{”‘n{m}?’h}, a® b, a{q+l—[(i=1}pl'i}b'...’ a{q+n—n{i=1}pii}}‘ 1<t<m and

0<gsn-1

If p = 2, obviously the order of every non-identity element of S must be divided by 2, hence we have [y is a
complete graph. If p is an odd prime then the order of non-identity element of elements of S is either 2 or
divided by p. Hence we can partition I's into two complete graphs.[’

CONCLUSIONS

Given a dihedral group D,, with n is a prime power, then the non-coprime graph of D,,is always a
complete graph or can be partitioned into two complete graphs. The same case happened to any subgroups of
DZn.
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