		also developed by scim	ago: IIII	SCIMAGC	INSTITUTIONS RANKI	NGS
SJR	Scimago Journal & C	Country Rank Enter J	ournal Title, ISSI	N or Publisl	ner Name	
Но	ome Journal Rankings	Country Rankings	Viz Tools	Help	About Us	

AIP Conference Proceedings

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United States Universities and research institutions in United States	Physics and Astronomy Physics and Astronomy (miscellaneous)	American Institute of Physics	75
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Conferences and Proceedings	0094243X, 15517616	1974-1978, 1983- 1984, 1993, 2000- 2001, 2003-2020	Homepage How to publish in this journal

SCOPE

Today, AIP Conference Proceedings contain over 100,000 articles published in 1700+ proceedings and is growing by 100 volumes every year. This substantial body of scientific literature is testament to our 40-year history as a world-class publishing partner, recognized internationally and trusted by conference organizers worldwide. Whether you are planning a small specialist workshop or organizing

confproc@aip.org

the largest international conference, contact us, or read these testimonials, to find out why so many organizers publish with AIP Conference Proceedings.

 \bigcirc Join the conversation about this journal

← Show this widget in your own website

> Just copy the code below and paste within your html code:

<a href="https://www.scimac

Metrics based on Scopus® data as of April 2021

Loading comments...

Follow us on @ScimagoJR

Some results of non-coprime graph of the dihedral group D_{2n} for *n* a prime power

Cite as: AIP Conference Proceedings **2329**, 020005 (2021); https://doi.org/10.1063/5.0042587 Published Online: 26 February 2021

Wahyu Ulyafandhie Misuki, I. Gede Adhitya Wisnu Wardhana, Ni Wayan Switrayni, and Irwansyah

AIP Conference Proceedings **2329**, 020005 (2021); https://doi.org/10.1063/5.0042587 © 2021 Author(s).

Some Results of Non-Coprime Graph of the Dihedral Group D_{2n} for n a Prime Power

Wahyu Ulyafandhie Misuki^{a)}, I Gede Adhitya Wisnu Wardhana^{b)}Ni Wayan Switrayni^{c)}, and Irwansyah^{d)}

Algebra Research Group, Universitas Mataram, Jl Majapahit No.62, Mataram, 83125, Indonesia

^{a)}wahyu.misuki@unram.ac.id ^{b)}Corresponding author: adhitya.wardhana@unram.ac.id ^{c)}niwayan.switrayni@unram.ac.id ^{d)}irw@unram.ac.id

Abstract. A graph of a finite group *G* whose vertices are all elements of *G* except the identity element, and edges defined as $(u, v) \in E(G)$ if and only if $(|u|, |v|) \neq 1$ is called a non-coprime graph of *G* and denoted by $\overline{\Gamma_G}$. In this paper we give some properties of non-coprime graphs of a dihedral group D_{2n} , when *n* is a prime power. One main result of this paper shows that $\overline{\Gamma_G}$ is either a complete graph or can be partitioned into two complete graphs.

INTRODUCTION

The non-coprime graph was first introduced by Mansori [1] who gave some of its characterizations. The non-coprime graph is a dual representation of the coprime graph that introduced by Ma [2]. Other authors also studied graph representation of groups especially on coprime graph such as on dihedral group by Gazir [3] and on group of integer modulo by Juliana [4].

In this paper we use the results of Gazir [3] on the coprime graph of dihedral group to find its dual representation graph, the non-coprime graph of the dihedral group D_{2n} , where *n* is a prime power.

Definition 1. [3] A graph is an ordered set(V, E) comprising:

- i. The set *V* is non-empty set of vertices
- ii. The set *E* is edge set of a pair vertices, $E \subseteq \{(v, w) \in V^2\}$

Two vertices v_i, v_j are said to be neighbors or adjacent if $(v_i, v_j) \in E$. A graph is called an undirected graph if (x, y) = (y, x) for every $(x, y) \in E$, and called a simple graph if every edge $(x, y) \in E$ is unique and $x \neq \ldots$ In this paper we only consider an undirected simple graph.

Definition 2. [3] An undirected simple graph G = (V, E) is called a complete graph if for every $x, y \in V$, then $(x, y) \in E$.

A mathematical system with a binary operation is called a group if it satisfies four conditions, namely closure, associativity, identity and invertibility.

Definition 3. [5] A nonempty set G is said to be a group if in G there is defined a binary operation, called the product and denoted by * such that, for any $a, b, c \in G$ then

International Conference on Mathematics, Computational Sciences and Statistics 2020 AIP Conf. Proc. 2329, 020005-1–020005-4; https://doi.org/10.1063/5.0042587 Published by AIP Publishing. 978-0-7354-4073-9/\$30.00

020005-1

- i. $a, b \in G$ implies that $a * b \in G$ (closed).
- ii. a * (b * c) = (a * b) * c (associative law).
- iii. There exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$ (the existence of an identity element).
- iv. For every $a \in G$ there exists an element $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$ (the existence of inverse).

If (G.*) is a group that satisfies a commutative property, that is for any $a, b \in G$, we have a * b = b * a, then (G.*) is called a commutative group or an abelian group. A non-empty subset H of a group G is said to be a subgroup of G if H is a group under the same operation on G. If |H| is finite, it is easy to check that whether H is a subgroup or not. But if |H| is infinite, then we can check whether H is a subgroup or not using the following theorem.

Theorem 1. [5] Let *H* be a non-empty subset of a group *G*. Subset *H* is a subgroup of *G* if and only if $ab^{-1} \in H$, for any $a, b \in H$.

A way to represent a group into a graph is by describing it by the order of every element of the group. The order of a group's element is given by the following definition.

Definition 4. [5] Suppose (G.*) is any group. Let a be any element of G. The smallest positive integer m that satisfies $a^m = e$ is said as an order of a, and denoted as |a| = m.

One of the most interesting groups is dihedral group, which is a group of symmetries of a regular polygon consisting of rotations and reflections. Dihedral groups are playing an important role in group theory, geometry, and chemistry.

Definition 5. [5] The dihedral group with order 2*n*, denoted by D_{2n} is the set: $D_{2n} = \{e, a, a^2, ..., a^{n-1}, b, ab, a^2b, ..., a^{n-1}b|a^n = b^2 = e, a^{-1} = bab\}$ for $n \ge 3$.

By definition, we can find the order of every element of the dihedral group, depending on n. For any natural number n, there always exists an element with order 2.

Theorem 2. [5] Let $D_{2n} = \{e, a, a^2, ..., a^{n-1}, b, ab, a^2b, ..., a^{n-1}b|a^n = b^2 = e, a^{-1} = bab\}$, then $|b| = |ab| = \cdots = |a^{n-1}b| = 2$

Gazir and Wardhana [5] found the characterizations of subgroup of a dihedral group in the following Theorems:

Theorem 3. [5] Let D_{2n} be the dihedral group with $n \ge 3$. If $S = \{e, a, a^2, \dots, a^{n-1}\} \subseteq D_{2n}$ then S is a nontrivial subgroup of D_{2n} .

Theorem 4. [5] Let D_{2n} be the dihedral group with $n \ge 3$. If $S = \{e, a^i b\} \subseteq D_{2n}$ where $i = 0, 1, 2, \dots, n-1$ then S is a non-trivial subgroup of D_{2n} .

Theorem 5. [5] Let D_{2n} be the dihedral group with $n \ge 3$. If n is composite where $n = p_1 p_2 \cdots p_k$ then $S = \{e, a^{p_i}, a^{2p_i}, \cdots, a^{n-p_i}\} \subseteq D_{2n}$ is a non-trivial subgroup of D_{2n} .

Mansori [1] gave the definition of non coprime graph of a group based on the order of every element of the group. We denote that the order of element x of a group as |x| (look at Def 4).

Definition 6. [3] Let G be a finite group. Non-coprime graph of group G, denoted by $\overline{\Gamma_G}$ is a graph with its vertices consist of $G - \{e\}$ and two different vertices u, v are said to be adjacent if $(|u|, |v|) \neq 1$.

MAIN RESULTS

The non-coprime graph of D_{2n} is a complete graph or can be partitioned into two complete graphs whenever n is a prime power.

If n is a power of even prime then the non-coprime graph of D_{2n} is a complete graph, as shown in the following theorem.

Theorem 6. Let D_{2n} be the dihedral group. If $n = 2^m$ for some $m \in \mathbb{N}$, then $\overline{\Gamma_{D_{2n}}}$ is a complete graph.

Proof. Since $n = 2^m$, then we have the order of D_{2n} is 2^{m+1} , hence the order of every non-identity element of D_{2n} must be divided by 2. Then for any non-identity x, $\in D_{2n}$ we have $(|x|, | = 2^k \text{ for some } k \in \mathbb{N}$, hence x, y are neighbors, then $\overline{\Gamma_{D_{2n}}}$ is a complete graph.

If n is a power of an odd prime then the non-coprime graph of D_{2n} can be partitioned into two complete graphs.

Theorem 7. Let D_{2n} be the dihedral group. If $n = p^m$ for some $m \in \mathbb{N}$ and p is an odd prime. Then $\overline{\Gamma_{D_{2n}}}$ can be partitioned into two disjoint complete graphs.

Proof. Let split $D_{2n} - \{e\}$ into two disjoint sets $G_1 = \{a, a^2, ..., a^{p^m-1}\}$ and $G_2 = \{b, ab, ..., a^{p^m-1}b\}$. We have p divides the order of any $x \in G_1$ and 2 divides the order of any $y \in G_2$ since x and y are rotation and reflection elements, respectively. So we have every two elements in G_i are neighbors for i = 1, 2. Since p is odd prime then for any $x \in G_1$ and $y \in G_2$, we have (|x|, |y|) = 1. Hence x and cannot be neighbors, Therefore $\overline{\Gamma_{D_{2n}}}$ can be partitioned into two disjoint complete graphs.

Subgroups of dihedral groups can be grouped into two types, that are trivial subgroups and non-trivial subgroups. Obviously, the graph from a trivial subgroup of D_{2n} satisfies the previous theorem.

These are all non-trivial subgroups of dihedral groups according to Gazir and Wardhana [5].

- 1. $S = \{e, a, a^2, \dots, a^{n-1}\}$

- 1. $S = \{e, a, w, \gamma, w,$ $0 \leq q \leq n-1.$

It is easy to check that when n is a prime then all the non-trivial subgroups are only the first two subgroups. In general, the non-coprime graph of any subgroup of D_{2n} is either a trivial graph or a complete graph.

Theorem 8. Let S be a non trivial subgroup of dihedral group D_{2n} . If $n = p^m$ then the non-coprime graph of S is a trivial graph or a complete graph or can be partitioned into two complete graphs.

Proof. Obviously for $S = \{e, a^i b\}$ where $i = 0, 1, 2, \dots, n - 1$, $\overline{\Gamma_S}$ is a trivial graph. So we have three cases left.

Case 1 : $S = \{e, a, a^2, \dots, a^{n-1}\}$ The order of any non-identity element of S must be divided by p, hence every non identity element of S must be neighbors. Then $\overline{\Gamma_s}$ is a complete graph.

Case 2 : $S = \{e, a^{p^{i}}, a^{2p^{i}}, \dots, a^{n-p^{i}}\}$ where $i = 1, 2, \dots, m$. Similar to case 1, we have the order of any non-identity element of S must be divided by p, then we can conclude that $\overline{\Gamma_S}$ is a complete graph.

Case 3: $S = \left\{ e, a^{\left\{ \prod_{i=1}^{\{t\}} p_{j_i} \right\}}, \dots, a^{\left\{ n - \prod_{i=1}^{\{t\}} p_{j_i} \right\}}, a^q b, a^{\left\{ q + \prod_{i=1}^{\{t\}} p_{j_i} \right\}} b, \dots, a^{\left\{ q + n - \prod_{i=1}^{\{t\}} p_{j_i} \right\}} \right\}, 1 \le t \le m$ and $0 \le q \le n - 1$.

If p = 2, obviously the order of every non-identity element of S must be divided by 2, hence we have $\overline{\Gamma_S}$ is a complete graph. If p is an odd prime then the order of non-identity element of elements of S is either 2 or divided by p. Hence we can partition $\overline{\Gamma_S}$ into two complete graphs.

CONCLUSIONS

Given a dihedral group D_{2n} with n is a prime power, then the non-coprime graph of D_{2n} is always a complete graph or can be partitioned into two complete graphs. The same case happened to any subgroups of D_{2n} .

REFERENCES

- 1. F. Mansoori, A. Erfanian, and B. Tolue, *Non-coprime graph of a finite group*, AIP Conference Proceedings 1750, 050017 (2016).
- 2. X. L. Ma, H. Q.Wei, and L. Y. Yang, *The Coprime Graph Of A Group*, International Journal of Group Theory, vol. 3, no. 3, 13-23 (2014).
- A. Gazir S, I. G. A. W. Wardhana, N. W. Switrayni, and Q. Aini, Some Properties Of Coprime Graph Of Dihedral Group D_{2n} When n is a Prime Power, Journal of Fundamental Mathematics and Applications, vol.3, no.1, 34-38 (2020).
- R. Juliana, M. Masriani, I. G. A. W. Wardhana, N. W. Switrayni, and I. Irwansyah, *Coprime Graph Of Integers Modulo n Group And Its Subgroups*, Journal of Fundamental Mathematics and Applications, vol.3, no.1, 15-18 (2020)
- 5. A. Gazir S and I. G. A. W. Wardhana, *Subgrup Non Trivial Dari Grup Dihedral*, Eigen Mathematics Journal, vol. 2, no. 2, 73-76 (2019).