AIP Conference Proceedings

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United States Universities and research institutions in United States	Physics and Astronomy Physics and Astronomy (miscellaneous)	American Institute of Physics	
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Conferences and Proceedings	0094243X, 15517616	$\begin{aligned} & 1974-1978,1983- \\ & 1984,1993,2000- \\ & 2001,2003-2020 \end{aligned}$	Homepage How to publish in this journal

SCOPE

Today, AIP Conference Proceedings contain over 100,000 articles published in 1700+ proceedings and is growing by 100 volumes every year. This substantial body of scientific literature is testament to our 40-year history as a world-class publishing partner, recognized internationally and trusted by conference organizers worldwide. Whether you are planning a small specialist workshop or organizing
the largest international conference, contact us, or read these testimonials, to find out why so many organizers publish with AIP Conference Proceedings.Join the conversation about this journal

A

G SCImago Graphica

Explore, visually communicate and make sense of data with our new free tool.

Get it

Metrics based on Scopus® data as of April 2021

Loading comments...

Some results of non-coprime graph of the dihedral group $D_{2 n}$ for n a prime power

Cite as: AIP Conference Proceedings 2329, 020005 (2021); https://doi.org/10.1063/5.0042587
Published Online: 26 February 2021
Wahyu Ulyafandhie Misuki, I. Gede Adhitya Wisnu Wardhana, Ni Wayan Switrayni, and Irwansyah

Some Results of Non-Coprime Graph of the Dihedral Group $D_{2 n}$ for \boldsymbol{n} a Prime Power

Wahyu Ulyafandhie Misuki ${ }^{\text {al }}$, I Gede Adhitya Wisnu Wardhana ${ }^{\text {b }}$ Ni Wayan Switrayni ${ }^{\text {c }}$, and Irwansyah ${ }^{\text {d) }}$

Algebra Research Group, Universitas Mataram, Jl Majapahit No.62, Mataram, 83125, Indonesia
${ }^{\text {a) }}$ wahyu.misuki@unram.ac.id
${ }^{\text {b) }}$ Corresponding author: adhitya.wardhana@unram.ac.id
${ }^{c}$ niwayan.switrayni@unram.ac.id
${ }^{\text {d) }}$ irw@unram.ac.id

Abstract

A graph of a finite group G whose vertices are all elements of G except the identity element, and edges defined as $(u, v) \in E(G)$ if and only if $(|u|,|v|) \neq 1$ is called a non-coprime graph of G and denoted by $\overline{\Gamma_{G}}$. In this paper we give some properties of non-coprime graphs of a dihedral group $D_{2 n}$, when n is a prime power. One main result of this paper shows that $\overline{\Gamma_{G}}$ is either a complete graph or can be partitioned into two complete graphs.

INTRODUCTION

The non-coprime graph was first introduced by Mansori [1] who gave some of its characterizations. The non-coprime graph is a dual represetation of the coprime graph that introduced by Ma [2]. Other authors also studied graph representation of groups especially on coprime graph such as on dihedral group by Gazir [3] and on group of integer modulo by Juliana [4].

In this paper we use the results of Gazir [3] on the coprime graph of dihedral group to find its dual representation graph, the non-coprime graph of the dihedral group $D_{2 n}$, where n is a prime power.

Definition 1. [3] A graph is an ordered $\operatorname{set}(V, E)$ comprising:
i. The set V is non-empty set of vertices
ii. The set E is edge set of a pair vertices, $E \subseteq\left\{(v, w) \in V^{2}\right\}$

Two vertices v_{i}, v_{j} are said to be neighbors or adjacent if $\left(v_{i}, v_{j}\right) \in E$. A graph is called an undirected graph if $(x, y)=(y, x)$ for every $(x, y) \in E$, and called a simple graph if every edge $(x, y) \in E$ is unique and $x \neq$. In this paper we only consider an undirected simple graph.

Definition 2. [3] An undirected simple graph $G=(V, E)$ is called a complete graph if for every $x, y \in V$, then $(x, y) \in E$.

A mathematical system with a binary operation is called a group if it satisfies four conditions, namely closure, associativity, identity and invertibility.

Definition 3. [5] A nonempty set G is said to be a group if in G there is defined a binary operation, called the product and denoted by $*$ such that, for any $a, b, c \in G$ then
i. $\quad a, b \in G$ implies that $a * b \in G$ (closed).
ii. $\quad a *(b * c)=(a * b) * c$ (associative law).
iii. There exists an element $e \in G$ such that $a * e=e * a=a$ for all $a \in G$ (the existence of an identity element).
iv. For every $a \in G$ there exists an element $a^{-1} \in G$ such that $a * a^{-1}=a^{-1} * a=e$ (the existence of inverse).

If (G.*) is a group that satisfies a commutative property, that is for any $a, b \in G$, we have $a * b=b *$ a, then ($G . *$) is called a commutative group or an abelian group. A non-empty subset H of a group G is said to be a subgroup of G if H is a group under the same operation on G. If $|H|$ is finite, it is easy to check that whether H is a subgroup or not. But if $|H|$ is infinite, then we can check whether H is a subgroup or not using the following theorem.

Theorem 1. [5] Let H be a non-empty subset of a group G. Subset H is a subgroup of G if and only if $a b^{-1} \in$ H, for any $a, b \in H$.

A way to represent a group into a graph is by describing it by the order of every element of the group. The order of a group's element is given by the following definition.

Definition 4. [5] Suppose (G.*) is any group. Let a be any element of G. The smallest positive integer m that satisfies $a^{m}=e$ is said as an order of a, and denoted as $|a|=m$.

One of the most interesting groups is dihedral group, which is a group of symmetries of a regular polygon consisting of rotations and reflections. Dihedral groups are playing an important role in group theory, geometry, and chemistry.

Definition 5. [5] The dihedral group with order $2 n$, denoted by $D_{2 n}$ is the set:
$D_{2 n}=\left\{e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b \mid a^{n}=b^{2}=e, a^{-1}=b a b\right\}$ for $\mathrm{n} \geq 3$.
By definition, we can find the order of every element of the dihedral group, depending on n. For any natural number n, there always exists an element with order 2 .

Theorem 2. [5] Let $D_{2 n}=\left\{e, a, a^{2}, \ldots, a^{n-1}, b, a b, a^{2} b, \ldots, a^{n-1} b \mid a^{n}=b^{2}=e, a^{-1}=b a b\right\}$, then $|b|=|a b|=$ $\cdots=\left|a^{n-1} b\right|=2$

Gazir and Wardhana [5] found the characterizations of subgroup of a dihedral group in the following Theorems:

Theorem 3. [5] Let $D_{2 n}$ be the dihedral group with $n \geq 3$. If $S=\left\{e, a, a^{2}, \cdots, a^{n-1}\right\} \subseteq D_{2 n}$ then S is a nontrivial subgroup of $D_{2 n}$.

Theorem 4. [5] Let $D_{2 n}$ be the dihedral group with $n \geq 3$. If $S=\left\{e, a^{i} b\right\} \subseteq D_{2 n}$ where $i=0,1,2, \cdots, n-1$ then S is a non-trivial subgroup of $D_{2 n}$.

Theorem 5. [5] Let $D_{2 n}$ be the dihedral group with $n \geq 3$. If n is composite wheren $=p_{1} p_{2} \cdots p_{k}$ then $S=\left\{e, a^{p_{i}}, a^{2 p_{i}}, \cdots, a^{n-p_{i}}\right\} \subseteq D_{2 n}$ is a non-trivial subgroup of $D_{2 n}$.

Mansori [1] gave the definition of non coprime graph of a group based on the order of every element of the group. We denote that the order of element x of a group as $|x|$ (look at Def 4).

Definition 6. [3] Let G be a finite group. Non-coprime graph of group G, denoted by $\overline{\Gamma_{G}}$ is a graph with its vertices consist of $G-\{e\}$ and two different vertices u, v are said to be adjacent $\operatorname{if}(|u|,|v|) \neq 1$.

MAIN RESULTS

The non-coprime graph of $D_{2 n}$ is a complete graph or can be partitioned into two complete graphs whenever n is a prime power.

If n is a power of even prime then the non-coprime graph of $D_{2 n}$ is a complete graph, as shown in the following theorem.

Theorem 6. Let $D_{2 n}$ be the dihedral group. If $n=2^{m}$ for some $m \in \mathbb{N}$, then $\overline{\Gamma_{D_{2 n}}}$ is a complete graph.
Proof. Since $n=2^{m}$, then we have the order of $D_{2 n}$ is 2^{m+1}, hence the order of every non-identity element of $D_{2 n}$ must be divided by 2.Then for any non-identity $x, \in D_{2 n}$ we have $\left(|x|,| |=2^{k}\right.$ for some $k \in \mathbb{N}$, hence x, y are neighbors, then $\overline{\Gamma_{D_{2 n}}}$ is a complete graph.

If n is a power of an odd prime then the non-coprime graph of $D_{2 n}$ can be partitioned into two complete graphs.

Theorem 7. Let $D_{2 n}$ be the dihedral group. If $n=p^{m}$ for some $m \in \mathbb{N}$ and p is an odd prime. Then $\overline{\Gamma_{D_{2 n}}}$ can be partitioned into two disjoint complete graphs.

Proof. Let split $D_{2 n}-\{e\}$ into two disjoint sets $G_{1}=\left\{a, a^{2}, \ldots, a^{p^{m}-1}\right\}$ and $G_{2}=\left\{b, a b, \ldots, a^{p^{m}-1} b\right\}$. We have p divides the order of any $x \in G_{1}$ and 2 divides the order of any $y \in G_{2}$ since \boldsymbol{x} and \boldsymbol{y} are rotation and reflection elements, respectively. So we have every two elements in G_{i} are neigbors for $i=1,2$. Since p is odd prime then for any $x \in G_{1}$ and $y \in G_{2}$, we have $(|x|,|y|)=1$. Hence x and cannot be neighbors, Therefore $\overline{\Gamma_{D_{2 n}}}$ can be partitioned into two disjoint complete graphs. \square

Subgroups of dihedral groups can be grouped into two types, that are trivial subgroups and non-trivial subgroups. Obviously, the graph from a trivial subgroup of $D_{2 n}$ satisfies the previous theorem.

These are all non-trivial subgroups of dihedral groups according to Gazir and Wardhana [5].

1. $S=\left\{e, a, a^{2}, \cdots, a^{n-1}\right\}$
2. $S=\left\{e, a^{i} b\right\}$ where $i=0,1,2, \cdots, n-1$
3. $S=\left\{e, a^{p_{i}}, a^{2 p_{i}}, \cdots, a^{n-p_{i}}\right\}$ where $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$
4. $\quad S=\left\{e, a^{\left\{\prod_{\{i=1\}}^{\{t\}} p_{j}\right\}}, \cdots, a^{\left\{n-\Pi_{\{i=1\}}^{\{t\}} p_{j}\right\}}, a^{q} b, a^{\left\{q+\prod_{\{i=1\}}^{\{t\}} p_{j_{i}}\right\}} b, \cdots, a^{\left\{q+n-\Pi_{\{i=1\}}^{\{t\}} p_{j_{i}}\right\}}\right\}$, where $1 \leq t \leq m$ and $0 \leq q \leq n-1$.

It is easy to check that when n is a prime then all the non-trivial subgroups are only the first two subgroups. In general, the non-coprime graph of any subgroup of $D_{2 n}$ is either a trivial graph or a complete graph.

Theorem 8. Let S be a non trivial subgroup of dihedral group $D_{2 n}$. If $n=p^{m}$ then the non-coprime graph of S is a trivial graph or a complete graph or can be partitioned into two complete graphs.

Proof. Obviously for $S=\left\{e, a^{i} b\right\}$ where $i=0,1,2, \cdots, n-1, \overline{\Gamma_{S}}$ is a trivial graph.
So we have three cases left.
Case 1:S $=\left\{e, a, a^{2}, \cdots, a^{n-1}\right\}$
The order of any non-identity element of S must be divided by p, hence every non identity element of S must be neighbors. Then $\overline{\Gamma_{S}}$ is a complete graph.

Case $2: S=\left\{e, a^{p^{i}}, a^{2 p^{i}}, \cdots, a^{n-p^{i}}\right\}$ where $i=1,2, \cdots, m$.
Similar to case 1 , we have the order of any non-identity element of S must be divided by p , then we can conclude that $\overline{\Gamma_{S}}$ is a complete graph.

Case 3: S $=\left\{e, a^{\left\{\prod_{\{i=1\}}^{\{t\}} p_{j}\right\}}, \cdots, a^{\left\{n-\Pi_{\{i=1\}}^{\{t\}} p_{j}\right\}}, a^{q} b, a^{\left\{q+\Pi_{\{i=1\}}^{\{t\}} p_{j_{i}}\right\}_{b}}, \cdots, a^{\left\{q+n-\prod_{\{i=1\}}^{\{t\}} p_{j_{i}}\right\}}\right\}, 1 \leq t \leq m \quad$ and $0 \leq q \leq n-1$.
If $p=2$, obviously the order of every non-identity element of S must be divided by 2 , hence we have $\overline{\Gamma_{S}}$ is a complete graph. If p is an odd prime then the order of non-identity element of elements of S is either 2 or divided by p. Hence we can partition $\overline{\Gamma_{S}}$ into two complete graphs. \square

CONCLUSIONS

Given a dihedral group $D_{2 n}$ with n is a prime power, then the non-coprime graph of $D_{2 n}$ is always a complete graph or can be partitioned into two complete graphs. The same case happened to any subgroups of $D_{2 n}$.

REFERENCES

1. F. Mansoori, A. Erfanian, and B. Tolue, Non-coprime graph of a finite group, AIP Conference Proceedings 1750, 050017 (2016).
2. X. L. Ma, H. Q.Wei, and L. Y. Yang, The Coprime Graph Of A Group, International Journal of Group Theory, vol. 3, no. 3, 13-23 (2014).
3. A. Gazir S, I. G. A. W. Wardhana, N. W. Switrayni, and Q. Aini, Some Properties Of Coprime Graph Of Dihedral Group $D_{2 n}$ When n is a Prime Power, Journal of Fundamental Mathematics and Applications, vol.3, no.1, 34-38 (2020).
4. R. Juliana, M. Masriani, I. G. A. W. Wardhana, N. W. Switrayni, and I. Irwansyah, Coprime Graph Of Integers Modulo n Group And Its Subgroups, Journal of Fundamental Mathematics and Applications, vol.3, no.1, 15-18 (2020)
5. A. Gazir S and I. G. A. W. Wardhana, Subgrup Non Trivial Dari Grup Dihedral, Eigen Mathematics Journal, vol. 2, no. 2, 73-76 (2019).
