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Abstract: The brown macroalgae Sargassum has been reported for its anti-UV and photoprotective
potential for industrial applications. This study evaluated the melanin inhibition activity of Sar-
gassum cristaefolium (SCE) ethanol extract. Melanogenesis inhibition by SCE was assessed in vitro
with B16-F10 melanoma cell models and in silico against melanin regulatory proteins Tyrosinase
(TYR) and Melanocortin 1 Receptor (MC1R). The regulatory properties evaluated were the melanin
content, intracellular tyrosinase activity and cellular antioxidant activities. In addition, the bioactive
compounds detected in SCE were subjected to molecular docking against TYR and MC1R. Based on
the results, 150 µg/mL SCE effectively inhibited the production of melanin content and intracellular
tyrosinase activity. Cellular tyrosinase activity was reduced by SCE-treated cells in a concentration-
dependent manner. The results were comparable to the standard tyrosinase inhibitor kojic acid. In
addition, SCE effectively decreased the intracellular reactive oxygen species (ROS) levels in B16-F10
cells. The antioxidant properties may also contribute to the inhibition of melanogenesis. In addition,
LCMS UHPLC-HR-ESI-MS profiling detected 33 major compounds. The results based on in silico
study revealed that the bioactive compound putative kaurenoic acid showed a strong binding affinity
against TYR (−6.5 kcal/mol) and MC1R (−8.6 kcal/mol). However, further molecular analyses are
needed to confirm the mechanism of SCE on melanin inhibition. Nevertheless, SCE is proposed as
an anti-melanogenic and antioxidant agent, which could be further developed into cosmetic skin
care products.

Keywords: macroalgae; melanin; melanoma; Sargassum; tyrosinase

1. Introduction

The process of melanin synthesis is known as melanogenesis, which is performed by
melanocytes presented among the basal cells of the epidermis [1]. Melanocytes produce
melanin in response to ultraviolet (UV) irradiation as a defense mechanism [2]. However,
the excessive production of melanin can cause melanoma skin cancer. Increased exposure
to UV irradiation is reported to be associated with more than 60% of melanoma cases [3].
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Hence, the development of an effective skin UV protection products should also take
melanin inhibition activity into consideration.

Marine macroalgae have been extensively reported to exhibit bioactive compounds
with a wide range of biological activities, including UV photoprotective, antioxidant, anti-
cancer and immunomodulatory activity [4–9]. Most marine macroalgae are found to inhabit
the intertidal zone with an average distance of 3–10 m from the shore [10]. Therefore, to
adapt and survive in these extreme conditions, macroalgae must develop a defense mecha-
nism by producing bioactive compounds that can minimize the photodamage induced by
excessive UV irradiation.

Various bioactive compounds in marine macroalgae have been reported to have inter-
esting photoprotective activity, such as mycrosporine-like amino acids (MAAs), sulphated
polysaccharides, carotenoids and polyphenols [11–13]. To date, more than 500 marine
macroalgae have been reported to exhibit MAAs, including the brown macroalgae Sargas-
sum [14]. In our previous work, we demonstrated that Sargassum cristaefolium contains the
MAA compound palythenic acid. This compound potentially contributes to the photo-
protective activity of S. cristaefolium. Numerous reports have shown the photoprotective
activity of the brown macroalgae Sargassum [6,15]. However, there are no reports of Sargas-
sum cristaefolium potential on melanogenesis inhibition.

In this study, the melanin inhibition potential of SCE is evaluated based on the cellu-
lar melanin content, tyrosinase inhibition and in silico molecular-docking analyses of
SCE bioactive compounds against melanin regulatory proteins Tyrosinase (TYR) and
Melanocortin 1 Receptor (MC1R). In addition, the effect of SCE on cellular antioxidants is
also evaluated. The process of melanogenesis also involves an increase in reactive oxygen
species (ROS), which induces oxidative stress in melanocytes [16]. Hence, the antioxidant
and free radical scavenging activity also play important roles in photoprotection against
the harmful effects of UV radiation.

2. Results and Discussion

Melanin is a pigment produced by melanocytes and it plays a vital role in protecting
the skin against ultraviolet (UV) radiation. However, the excessive production and accu-
mulation of melanin could cause severe problems, including skin cancer [17]. A type of
skin cancer known as melanoma elicits a substantial increase in melanin pigment produc-
tion [18]. Melanoma is one of the most aggressive forms of cancer and has a high mortality
rate [19].

Thus, the investigation of therapeutic agents that could inhibit melanogenesis is essen-
tial for skin depigmentation or lightning treatments. In addition, the currently reported
anti-melanogenic agents, such as hydroquinone, kojic acid and arbutin, sometimes produce
side effects, including skin irritation and cell toxicity [20–22]. Hence, finding a potent
natural product with melanogenesis-inhibiting activity with few side effects is necessary.

2.1. Effects of SCE on B16-F10 Melanoma Cell Viability

To examine the cytotoxic activity of SCE, the B16-F10 melanoma cells were exposed
to the SCE extract at concentrations between 1 and 100 µg/mL for 48 h. The SCE-treated
cells showed no morphological changes at the tested concentrations (Figure 1A). The
anthracycline doxorubicin (DOX) was used as the positive control. Treatment with SCE
showed no cytotoxicity (IC50 > 100 µg/mL) at the tested concentrations (Figure 1B).

The positive control DOX was shown to affect the cell morphology at concentrations
below 10 µg/mL (IC50 = 3.25 ± 0.52 µg/mL). Extracts with IC50 greater than 100 µg/mL
are considered cytotoxic ineffective extracts [23,24]. A previous report demonstrated that
Sargassum sp. extract showed low cytotoxicity against Hep-2 and MCF-7 cancer cells with
IC50 values above 100 µg/mL. [25] Another report also indicated that Sargassum anguisti-
folium extract showed no cytotoxicity in SH-SY5Y cells and prevented methamphetamine
toxic effects in SH-SY5Y cells [26]. However, some reports indicate that brown macroalgae
Sargassum could be a valuable source of potential anticancer compounds, such as fucoidan.
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The polysaccharide fucoidan isolated from Sargassum has demonstrated anticancer poten-
tial in both in vitro and in vivo studies [27,28]. In some cases, a single compound could be
more toxic than the whole extract [29,30].
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anoma cell models. Cells exposed to UV-A irradiation typically demonstrate an increase 
in cellular Reactive Oxygen Species (ROS) [34]. The levels of ROS in cells were quantified 
using the oxidation-sensitive fluorescent probe dichlorofluorescein (DCFH) [35].  

Figure 1. Cytotoxicity assay of SCE against B16-F10 cells for 48 h. (A) Morphological observations
under a bright field microscope. (B) A dose–response curve showing no cytotoxic activity of SCE at
the tested concentrations. The results are represented as the means of three independent experiments
(SEM ± SD).

2.2. Cellular Antioxidant Activity of SCE

Reactive Oxygen Species (ROS) have been shown to significantly contribute to excess
oxidative damage, which results in disease progression, including melanogenesis [31].
Melanogenesis is a biochemical pathway responsible for melanin synthesis in melanocytes.
Excessive ultraviolet (UV) radiation can significantly increase the production of melanin,
which causes the cell to become heavily pigmented. This then causes the transformation of
melanocytes to melanoma, an extremely aggressive form of skin cancer that can spread to
various vital organs, including the brain and lungs [32]. In addition, ROS are also produced
in melanomas affected by high UV radiation [33].

Hence, reducing intracellular ROS levels is important to inhibit melanogenesis progres-
sion. In this study, the cells were exposed to UV-A irradiation to induce B16-F10 melanoma
cell models. Cells exposed to UV-A irradiation typically demonstrate an increase in cellular
Reactive Oxygen Species (ROS) [34]. The levels of ROS in cells were quantified using the
oxidation-sensitive fluorescent probe dichlorofluorescein (DCFH) [35].

The esterified form of DCFH (dichlorofluorescein diacetate or DCFH-DA) can pene-
trate the cell membrane and produce an emission of green fluorescence (Figure 2A). This
fluorescence intensity was quantified to determine the cellular ROS levels. In addition, the
intracellular ROS levels of SCE-treated B1-F10 cells decreased in a concentration-dependent
manner (Figure 2B). A previous study showed that Sargassum horneri methanol extract
protects C2C12 skeletal muscle cells from oxidative stress [36].
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with α-MSH. This production of melanin in B16-F10 cells was inhibited by increasing the 
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Figure 2. Reactive Oxygen Species (ROS) in B16-F10 cells detected using a H2DCFDA fluorescence
probe. (A) B16-F10 cells emit green fluorescence after UV-A irradiation for 30 min. (B) The CTCF
values show decreased fluorescence intensity with increased concentrations of SCE in B16-F10 cells,
thereby, indicating a decrease in the cellular ROS levels. The results are represented as the means of
three independent experiments (SEM ± SD). Different letters indicate a significant difference between
treatments (p < 0.05).

Other brown macroalgae, such as Gongolaria baccata extract, demonstrated potent
cytoprotective activity in Caco-2 cells from oxidative stress induced by tert-butyl hydroper-
oxide [37]. Regarding brown seaweeds, their cytoprotective effects are possibly due to the
presence of various terpenoids, phenols and phlorotannin. Phenols in brown macroalgae,
particularly phlorotannins, play roles as chelating agents with reactive oxygen species and
consequently prevent cellular oxidative stress and tissue damage [38,39].

2.3. SCE Effects in B16-F10 Melanin Content

To determine the effects of SCE on inhibiting cellular melanin content production, the
B16-F10 cells were first treated with the alpha-melanin stimulating hormone (α-MSH) [40].
In the normal physiology process, melanin synthesis is induced by α-MSH secreted by ker-
atinocytes, which would then trigger melanin synthesis through binding with MC1R [41,42].
Figure 3A shows that B16-F10 cells produced melanin after 72 h treated with α-MSH. This
production of melanin in B16-F10 cells was inhibited by increasing the concentration
of SCE.

A similar result was also seen in α-MSH-induced B16-F10 cells treated with the positive
control kojic acid (100 µM). Furthermore, the B16-F10 cells, which produce high melanin
content, would result in a dark brown-colored cell pellet (Figure 3B). This dark brown color
decreased in cell pellets treated with SCE and kojic acid. This indicates that SCE showed
potent inhibition of the melanin content production. The treatment with SCE above a
50 µg/mL concentration demonstrated a significant decrease in melanin content compared
to the control treated with only α-MSH (Figure 3C). In addition, the melanin content in
higher concentrations of SCE showed no significant difference compared to kojic acid.
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Figure 3. The B16-F10 cells were treated with α-MSH to induce melanin production. (A) Morpho-
logical observations showing the normal cell morphology of cells treated with α-MSH and SCE.
(B) Harvested cell pellets of α-MSH-treated cells with SCE. (C) Melanin content analyses of α-MSH-
treated cells with SCE. (D) Tyrosinase activity inhibition in α-MSH-treated cells with SCE. The results
are represented as the means of three independent experiments (SEM ± SD). * Indicates signifi-
cant difference between treatments (p < 0.05). ** indicates a highly significant difference between
treatments (p < 0.01). Black arrows indicate melanin production. ns indicates no significant difference.

Kojic acid is a natural metabolite derived from fungi that can inhibit tyrosinase ac-
tivity, which plays an important role in the synthesis of melanin [43]. Kojic acid showed
strong inhibitory activity against the tyrosinase enzyme (Figure 3D). Our results show that
increased concentrations of SCE treatment also increased cellular tyrosinase inhibition in
B16-F10 cells.

Moreover, the treatment with 100 µg/mL concentration of SCE resulted in 77.33%
tyrosinase activity inhibition. Similar results were also seen in a study on Sargassum
thunbergia, which showed strong tyrosinase inhibition activity (88.3%) [44]. A previous
study that screened 43 indigenous marine algae for tyrosinase inhibitory activity showed
that the brown macroalgae Ecklonia and Sargassum showed potent tyrosinase inhibitory
activity comparable to kojic acid [45].

2.4. Phytochemical Profling and Molecular Docking of SCE Compounds

To evaluate the potential putative compounds in SCE that possibly contribute to
the inhibition of melanogenesis, the extract was subjected to UHPLC-HR-ESI-MS and
analyzed using Compound Discoverer 3.2 (Thermo ScientificTM, Waltham, MA, USA) with
references related to marine-related natural products. Each compound’s putative identity
was confirmed using MS1 and MS2.
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Based on the peak area, the highest putative compound found in SCE extract was
putatively pheophorbide A of m/z 593.27496 ([M+H]+), the MS/MS fragmentation pat-
tern corresponding to Chen et al. (2015) [46] with the MS/MS fragmentation of m/z
431.22223; 445.20157; 533.25433; 547.23254; 593.27496 ([M+H]+), which is also shown in
Supplementary Figure S1. This porphyrin derivative was discovered earlier in the brown
algae Saccharina japonica (former name Laminaria japonica), where it inhibited NO genera-
tion in LPS-stimulated RAW 264.7 cells [47]. This anti-inflammation component was also
discovered in the green algae Klebsormidium flaccidum [48].

The putative 2-monoolein of m/z 357.29940 ([M+H]+) was the second highest putative
compound detected in SCE. This compound was previously found and isolated from the
brown algae Ishige sinicola [49]. Putative eicosapentaenoic acid (C20:5, ω-3) with m/z
303.23117 ([M+H]+) was the third highest. This acid was previously discovered in the
brown alga Zonaria tournefortii [50]. The putative kaurenoic acid of m/z 303.23117 ([M+H]+)
was the fourth highest.

This terpene’s production gene was also discovered in the algae Laurencia dendroidea [51].
The putative compound halocynthiaxanthin 3-acetate had the greatest m/z 641.41821
([M+H]+), followed by stearidonic acid and α-monopalmitin, which had m/z 277.21555
and 331.33047 ([M+H]+), respectively. The total of 33 putative compounds that were
detected in SCE, including these MS/MS patterns and the corresponding references, are
shown in Supplementary Table S1 and Supplementary Figure S1.

A total of 27 compounds from all 33 compounds were selected based on having
a molecular weight (MW) below 500 Dalton for effective penetration through the skin
layer [52]. The compound kaurenoic acid (C20H30O2) showed the highest binding activity
against TYR (−6.5 kcal/mol) and MC1R (−8.6 kcal/mol). This was significantly higher
than the positive control kojic acid with the binding affinity of −4.2 kcal/mol for both
target proteins TYR and MC1R (Table 1).

Table 1. The binding affinity results of kaurenoic acid compared to the standard tyrosinase inhibitor
kojic acid.

Compound Receptor Binding Affinity (kcal/mol)

Kaurenoic Acid TYR −6.5
Kaurenoic Acid MC1R −8.6

Kojic Acid TYR −4.2
Kojic Acid MC1R −4.2

The larger negative values of the total net charge represent a higher binding affinity of
the ligand against the target protein [53]. Based on ligand–protein interaction analyses, the
compound kaurenoic acid formed a conventional hydrogen and van der Waals bond with
TYR and MC1R (Figure 4).

These two chemical bonds are considered to be significantly strong compared to other
chemical bonds, such as metallic, ionic and covalent bonds [54]. Kaurenoic acid has been
described as a potential tyrosinase inhibitor in previous studies in various plants [55–58].
However, this is the first study to report the detection of putative kaurenoic acid in macroal-
gae or seaweeds (Figure 5).
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3. Materials and Methods
3.1. Chemical and Reagents

Kojic acid, α-MSH, doxorubicin (DOX), 3,4-dihydroxyphenylalanine (L-DOPA), tyro-
sine, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT), fluorescent dye
CM-H2DCFDA and dimethyl sulfide oxide (DMSO) were purchased from Sigma-Aldrich
(St Louis, MO, USA). Organic solvents were purchased from Merck Millipore at HPLC
grade (Darmstadt, Germany). Dulbecco’s Modified Eagle’s Medium (DMEM), Fetal Bovine
Serum (FBS), trypsin, penicillin and streptomycin were purchased from Thermo Scientific
Co. (Shanghai, China).

3.2. Plant Materials and Extraction

The brown macroalgae Sargassum cristaefolium was collected from the western coast
of Lombok, Batu Layar coast (8◦24′11.7396′′ S, 116◦4′1.9056′′ E). The macroalgae samples
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were identified by referring to an electronic database containing algae taxonomy and
nomenclatural information. The collected samples were pre-treated three times by washing
with distilled water to remove unwanted debris. Once the samples were clean, they were
subjected to the drying process. The drying process was performed at room temperature
(24 ◦C) controlled by an air conditioner. In addition, the samples were also treated with
70% ethanol and 1% fungicide to prevent the growth of microorganisms. Every 24 h, the
samples were flipped to avoid moisture accumulation.

After three days, the samples were transferred into an oven (40 ◦C) until they reached
a constant weight. The resulting dried seaweed biomass was extracted with ethanol (96%)
by a maceration process [59]. The dried seaweed biomass was submerged in ethanol (96%)
with a ratio of 1:10 w/v with constant stirring of 100 rpm on a magnetic stirrer. The mixture
was then filtered with a cloth every 24 h. The filtrates were combined and subjected to a
rotary evaporator (56 ◦C, 45 rpm and 320 bar) to remove the solvent. The resulting paste
was then used as the ethanol extract of Sargassum cristaefolium (SCE). The SCE was stored
at −20 ◦C for further analyses.

3.3. Cell Culture

The B16-F10 melanoma cells (ECACC-92101204) were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM; Hyclone, Logan, UT, USA) with 10% fetal bovine serum (FBS)
supplemented with penicillin/streptomycin (100 IU/ 50 µg/mL). The cells were kept and
grown in a humidified atmosphere containing 5% CO2 at 37 ◦C.

3.4. MTT Cytotoxicity Assay

The cytotoxic activity of SCE was evaluated using an MTT-based assay [60]. The
B16-F10 cells were seeded into 96-well plates with a density of 1 × 104 cells/well. After
24 h, the cell culture medium was changed with the treatment medium containing SCE at
various concentrations 10–1000 µg/mL). The cells were then further incubated for another
72 h in a humidified CO2 incubator. After the treatment, the medium was changed into
MTT solution and incubated at 37 ◦C for 2 h. The MTT solvent DMSO was added to the
medium and incubated for 15 min. Finally, the absorbance was measured at 570 nm using a
UV-VIS spectrophotometer. The dose–response graft and IC50 values were generated with
GraphPad software version 9.4.1.

3.5. Determination of Cellular Antioxidant Activity

The cellular antioxidant activity of SCE was determined by labeling cellular ROS
levels with fluorescence probe H2-DCFDA [61]. The B16-F10 melanoma cells were seeded
at 3.5 × 104 cells/cm2 in 60 mm cell-culture dishes. The cells were kept at 37 ◦C and 5%
CO2 for 24 h to adhere. The cells were then pre-treated with increasing concentrations of
SCE for 1 h prior to UV-A irradiation. The increase in cellular ROS was induced by UV-A
irradiation (8 J/ cm2) for 30 min [62].

After UV-A irradiation, the cells were washed with serum-free medium and analyzed
with 25 µM dichlorofluorescein diacetate (DCF-DA) for 30 min at 37 ◦C in the dark. Intracel-
lular ROS would react with DCF-DA, which emits green fluorescent light. Thus, the cellular
ROS levels could be quantified with a fluorescence-inverted microscope (Axio observer Z1,
Zeiss, Germany). The fluorescence intensity was determined using the corrected total cell
fluorescence (CTCF) equation: CTCF = integrated density—(area of selected cell ×mean
fluorescence of background readings) [63].

3.6. Determination of Melanin Content

The B16-F10 melanoma cells were seeded into 12-well plates with a seeding density
of 3 × 104 cells [64]. After 24 h, the cells were injected with alpha-melanocyte-stimulating
hormone (α-MSH; 100 nM), followed by the addition of kojic acid or SCE. The treatment
was stored in a 37 ◦C CO2 incubator for 72 h. The cells were washed with PBS and lysed
with 1 N NaOH for 1 h at 60 ◦C. The melanin content was determined at 450 nm absorbance
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and normalized to the total protein content measured by Bradford assay. The morphology
of the cells was also documented (Zeiss primo vert, Zeiss, Germany).

3.7. Measurement of Cellular Tyrosinase Activity

The B16-F10 cells were seeded at a density of 10× 104 cells/well in 12-well cell-culture
plates. After 24 h, the cells were treated with SCE or kojic acid for 2 h and then stimulated
with 100 nM α-MSH for an additional 72 h. The cells were then washed with PBS and
lysed with lysis buffer. The cell lysates were centrifuged at 5000 rpm for 15 min at 4 ◦C.
The enzyme activity was normalized to the protein concentration as determined with the
Bradford assay. The reaction of the cellular tyrosinase and L-DOPA solution was performed
at 37 ◦C for 1 h [65]. The production of dopachrome was measured at 490 nm absorbance.
Dopachrome is then converted into a synthetic form of melanin [59].

3.8. UHPLC-HR-ESI-MS Analyses of SCE

The bioactive compounds in SCE were profiled with UHPLC Vanquish Tandem Q
Exactive Plus Orbitrap HRMS (Thermo Fisher Scientific, Waltham, MA, USA). Separations
were performed on an Accucore C18 column (Thermo Fisher Scientific, 100 mm × 2.1 mm
× 1.5 µm) at 30 ◦C with a flow rate of 0.2 mL/min. We employed a sheath gas flow rate of
15, an auxiliary gas flow rate of 3, a sweep gas flow rate of 0, a spray voltage of 3.80 kV, a
capillary temperature of 320 ◦C, an auxiliary gas heater temperature of 0 ◦C and an S-lens
RF level of 50.0.

The resolution was set at 70,000 for the entire MS, with an AGC target of 3 × 106 and
a maximum IT of 100 ms. In addition, the resolution for dd-MS2 was set to 17,500 with
an AGC target of 1 × 105 and a maximum IT of 50 ms. Furthermore, the loop count was
set to 5, topN was set to 5, the isolation window was 4.0 m/z, no fixed first mass was set
up, and the (N) CE/stepped (N)CE was 18, 35 and 53, with TopN. For the dd setting, the
minimum AGC target was 8 × 103 with an intensity threshold of 1.6 × 105, and no apex
trigger or charge exclusion was set up. The excluded isotope must be enabled, and the
dynamic exclusion time must be set to 10.0 s.

The mobile phase consisted of water (solvent A) and acetonitrile (solvent B), both
acidified with 0.1% formic acid. The gradient was operated as follows: 0.1 min at 5% B,
1–25 min at 5–95% B, 25–28 min at 95% B and 28–30 min at 5% B. Before being injected at a
volume of 2.0 µL, the extracted sample was filtered with polytetrafluoroethylene (PTFE)
0.2 µm. The ESI conditions were set to positive over a range of 100–1500 m/z. [66]. Caffeine
was used as a calibrant in the study. The putative compounds were identified using the
Compound Discoverer Library version 3.2 and the references.

3.9. In-Silico Molecular Docking Analyses of Bioactive Compounds Detected in SCE

The acquired bioactive compounds in SCE were subjected to in silico molecular dock-
ing against melanogenesis-related proteins tyrosinase (TYR, PDB ID: 2Y9X) and melanin-
concentrating hormone receptor 1 (MC1R, PDB ID: 7F41) [67]. From 33 acquired bioactive
compounds from LCMS UHPLC-HR-ESI-MS analyses, 27 compounds were selected as
ligands based on molecular weight (<500 Da).

In addition, these ligand candidates were prepared in 2D form with ChemDraw Ultra
12.0, which was further converted to 3D form with Chem3D Pro 17.0. The protein receptors
were prepared with DS BIODIVIA Discovery Studio 2016 v16.1.0 × 64. The grid box was
determined by redocking with AutoDockTools-1.5.7 [68].

The grid box for the TYR receptor was positioned at the center x, y, z (22.548, 2.483,
−93.071) with the size of (Å) x, y, z (40, 40, 40). The grid box for the MC1R receptor was
positioned at the center x, y, z (92.688, 80.386, 111.935) with the size of (Å) x, y, z (44, 40,
40). All ligands were subjected to molecular docking with AutoDock Vina v.1.2.0 [69]. The
interaction between ligand and receptor was investigated using DS BIOVIA Discovery
Studio 2016 v16.1.0 × 64. The visualization between ligand and receptor was generated
with PyMOL software v.2.4.1 [70].
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3.10. Statistical Analyses

All data are shown as the mean± SD. The data were analyzed using one-way ANOVA.
Differences were considered significant if p < 0.05. All analyses were performed using
GraphPad Prism software for Windows, version 9.4.1.

4. Conclusions

In conclusion, in this study, we proposed melanin-inhibiting activity of brown macroal-
gae Sargassum cristaefolium, which can inhibit melanin content and tyrosinase activity. In
addition, the ethanol extract of Sargassum cristaefolium (SCE) could reduce the oxidative
species (ROS) levels in UV-A irradiated cells. Among all compounds in SCE, diterpene
kaurenoic acid potentially contributes to SCE melanin-inhibiting activity.

Based on in silico molecular-docking analyses, the putative kaurenoic acid showed the
highest binding affinity for the melanogenesis-related proteins TYR and MC1R. However,
the compound needs to be further isolated and characterized in in vitro and in vivo models.
Nevertheless, SCE shows potential to be developed into a skin UV-protection agent for
cosmetic or medicinal industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238585/s1, Table S1: Predicted bioactive compound
of SCE using untargeted HRMS method, Table S2: Docking result of all ligands with MW < 500 Da
against TYR, Table S3: Docking result of all ligands with MW < 500 Da against MC1R, Table S4:
Summary of amino acid residues interacting with the ligand kaurenoic acid. Figure S1: Total ion
chromatogram of UHPLC-HR-ESI-MS analysis of SCE (A) and blank (B).
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