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Abstract 

Statistical modeling of the corrosion inhibition properties with furan derivative inhibitors against 

mild steel has been investigated using the quantitative structure-property relationship QSAR 

method. This modeling is based on the correlation between corrosion inhibition efficiency (IE%) 

and several electronic and structural properties of compounds such as EHOMO (Highest 

Occupied Molecular Orbital energy), ELUMO (Lowest Unoccupied Molecular Orbital energy), 

EL-H (Gap energy), μ ( dipole moment), IP (ionization potential), EA (electron affinity), ƞ 

(hardness), σ (softness), χ (electronegativity), ∆N (fraction of electron transfer), ω 

(electrophilicity index), ∆EB-D (back-donation energy), Log P, Vm (critical volume), and Mr 

(relative molecular mass). These properties were calculated using DFT on B3LYP/6-31G(d). 

Statistically, they analyzed using four methods: partial least squares regression PLS, principal 

component regression PCR, multiple linear regression MLR, and principal component analysis 

PCA. The best QSAR modeling results are by PCR statistical analysis. It is proven by the 

validation results (R2 = 0.976; R2adj = 0.904) and analysis of collinearity in the data. The 

predictions of the four furan-derived compounds from PCR modeling gave promising results, 

especially for the BMOPF (IE% pred = 169.37) and the FMP (IE% pred = 100.81). 

Introduction 

Corrosion is a natural phenomenon in which metals and their alloys try to return to a 

more stable thermodynamic state due to reactions with their surroundings [1,2]. Corrosion of 

metal compounds and their alloys is one of the main problems in the industry today. It is 

considered a problem because it can be a source of environmental pollution, for example, in the 

carbon steel industry, where acid is used for pickling and descaling. Researchers are therefore 

urged to develop methods to protect these minerals and lessen their environmental impact. As a 

result, corrosion inhibitors are one of the most widely used methods for preventing corrosion and 

controlling metal deterioration [3,4]. Of course, depending on how corrosive an environment is, 

different corrosion techniques are used. For instance, organic compounds are the most prevalent 

class of inhibitors to solve the acidic media issue. These compounds' structural and electrical 

characteristics play a significant role in their behavior and performance. These substances 

typically have double and triple bonds in their chemical structure and heteroatoms, including 

nitrogen, oxygen, sulfur, and phosphorus, enclosed in aromatic rings. It may increase the 

material's surface adsorption value and increase its reactivity [5-9]. 

Furan-derived compounds have excellent promise as corrosion inhibitors in acidic 

conditions [10,11]. These organic compound derivatives have been shown in experiments to take 

free electrons from the metal surface by utilizing unoccupied orbitals of lower energy levels and 

donating electrons to the metal surface to create coordinating covalent bonds. It makes it easier 
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for the inhibitor to stick to the metal surface. Its adsorption enables the blocking of the active 

sites by decreasing the rate of dissolving of the metal along with the release of protons and 

increasing the coverage ratio. The enhanced inhibition of the effects of these compounds on 

corrosion indicates it. 

This approach to quantum chemistry has proven to be very useful in determining the 

molecular structure and the electronic structure and characteristics of the reactive sites to 

elucidate the reaction mechanism of corrosion inhibition processes. In addition, this approach is 

also useful for understanding the relationship between corrosion inhibition efficiency and several 

corrosion inhibitor molecular indices or their quantum parameters. Quantitative Structure-

Property Relationship (QSPR) has recently been widely used for quantitative analysis of 

corrosion inhibition processes to find a consistent relationship between variations in the index of 

molecular properties and the inhibitory activity of several compounds [12-18].  

This study's use of a mathematical approach can produce qualitative and quantitative data 

that can aid in improving knowledge of the process of corrosion inhibition. Finding a stable 

structural property link between corrosion inhibition efficiency (IE%) and molecular electronic 

characteristics is one of the goals of this research. The electronic properties include EHOMO 

(Highest Occupied Molecular Orbital energy), ELUMO (Lowest Unoccupied Molecular Orbital 

energy), EL-H (Gap energy), μ (dipole moment), IP (ionization potential), EA (electron affinity), 

ƞ (hardness), σ (softness), χ (electronegativity), ∆N (fraction of electron transfer), ω 

(electrophilicity index), ∆EB-D (back-donation energy), Log P, Vm (critical volume), and Mr 

(relative molecular mass) obtained by computation, DFT B3LYP method and basis set 6-31G (d) 

for 13 furan derivatives. They have been studied experimentally as a corrosion inhibitor on mild 

steel in 250 mL of 1M HCl. with an inhibitor of 0.005 M [19,20]. 

The current study focused on statistical analysis of the data was evaluated through a 

comparison of 4 mathematical regression models, namely: Partial Least Square (PLS), Principal 

Component Regression (PCR), Multiple Linear Regression (MLR), and Principal Component 

Analysis (PCA), to understand depth the mechanism of corrosion inhibition. In addition, this 

research was also conducted to determine the relevant and mutually influential molecular indices 

in the variation of corrosion inhibition of the compounds studied. Finally, the results of the 

established mathematical equations will make it possible to estimate the value of corrosion 

inhibitors of similar compounds and make it easier for other researchers to synthesize related 

compounds because of the promising prediction results. 

Methodology 

2.1 Experimental Data 

 This study used 13 furan derivative compounds to find the QSPR between the potential 

corrosion inhibitors and their molecular structures (Figure 1). Furthermore, the corrosion 

inhibitor of the other four furan derivatives was calculated using the best QSPR equation 

obtained. This research is a complementary statistical study and another study of previous studies 

on corrosion inhibitors of furan compounds that have been tested experimentally. The furan-

derived compounds whose QSPR will be studied can be seen in Table 1, and the furan-derived 

compounds whose predicted corrosion inhibitor values will be sought can be seen in Table 2. 
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Figure 1. Structure of 13 furan derivatives for QSAR model development and predicted 

corrosion inhibitor values 

Table 1. Furan-derived compounds whose corrosion inhibitor values have been obtained 

experimentally 

No. IUPAC Name Abbreviation IE exp (%) 

[19] 



 

Table 2. Furan-derived compounds whose predicted corrosion inhibitor values 

No. IUPAC Name Abbreviation Ref 

1. Bis(2-methoxy-4-(oxiran-2-ylmethyl)phenyl) furan-

2,5-dicarboxylate 

BMOPF [21]  

2. 2,5-bis((oxiran-2-ylmethoxy)methy)furan BOMF [22] 

3. 5-(2-furyl)-3-methyl-1-penten-3-ol FMP [23] 

4. N-(5-acetylfuran-3-yl)acetamide NAA [24] 

 

Computational Calculation 

 All molecular geometries were optimized by Gaussian 09 Software [25]. Quantum 

chemical calculations used in geometry optimization are DFT with the B3LYP function and on 

the 6-31G (d) basis set. It is also used in determining other physical-chemical descriptors that 

will also be used in QSPR. Monte Carlo simulations of furan derivatives were carried out using 

the Material Studio application [26]. This study uses iron or Fe crystals with a (1 1 0) surface. 

The thickness value of the iron used is 8. Furthermore, in the supercell section, the U and V 

values are used at 20. In the crystal option, the value of the vacuum thickness is 15. Finally, a 

simulation is carried out by selecting the adsorption location option. The number of inhibitor 

compounds is set to 1 and water to 100. The simulation in this study also uses atomic targets at 

the top of the Fe layer so that later the results obtained can be more accurate. 

Statistic analysis 

 A statistical study was carried out using the XLSTAT premium 2021 application [27] on 

13 furan-derived compounds to find the QSPR between the corrosion inhibitor value (IE%) and 

the intrinsic electronic and structural properties of these compounds. In this study, three 

statistical analyzes were selected to find the QSPR model: Partial Least Square (PLS), Principal 

Component Regression (PCR), and Multiple Linear Regression (MLR) [13, 28-31]. Furthermore, 

Principal Component Analysis (PCA) was carried out, which made it possible to see the 

relationship between descriptors and check redundancy and collinearity between the descriptors 

studied so that later the best statistical analysis could be determined in the QSPR study of these 

furan derivatives compounds. 

1. Ethyl 5-(chloromethyl)-2-furoate ECMF 96.54 

2. 5-(2-furyl)-1,3-cyclohexanedione FCH 89.93 

3. 2-furanmethanethiol FMT 89.44 

4. 2-furonitrile FN 89.03 

5. 5-bromo-2-furoic acid BFA 88.60 

6. Trans-3-furanacrilyc acid FAA 78.24 

7. 2-ethylfuran EF 77.34 

8. Methyl 2-furoate MF 76.75 

9. 5-methylfurfural MFF 76.14 

10. 5-(dimethylaminomethyl)furfuryl alcohol DMFA 71.99 

11. 2-furoyl chloride FC 64.25 

12. Furfuryl alcohol FFA 53.93 

13. 2-(2-nitrovinyl)furan NVF 35.96 



Validation 

 Validation tests were conducted to evaluate the explanatory quality and prediction level 

of the QSPR modeling. In this study, only internal validation was carried out. Internal validation 

is based on several statistical parameters, such as the coefficient of determination (R2), adjusted 

coefficient of determination (R2
adj), prediction coefficient of determination (R2), PRESS value, 

and standard deviation (SD). Next, we look for the coefficient of determination cross-validation 

(R2
cv) to evaluate the relevance of this procedure [32-34]. R2

cv is expressed in the form, 

R2
cv = 1 - 

∑ (IE exp − 𝐼𝐸 𝑐𝑎𝑙)
𝑛

𝑖=1

∑ (IE exp − 𝐼𝐸 𝑎𝑣𝑔)
𝑛

𝑖=1

 

Where IEexp and IEcal are the experimental corrosion inhibitor values and the calculated corrosion 

inhibitor values, respectively. IEavg is the average IEexp value. 

Results and Discussion 

Molecular Geometry 

 The molecular geometry of the investigated compounds was determined by optimizing all 

structural parameters using Density Functional Theory (DFT) at the B3LYP/6-31G level (d) [35-

37]. The geometry obtained is qualified through the minimum energy of the molecular structure 

and is proved by the absence of imaginary frequencies. The final optimized geometry can be 

seen in Figure 2.  
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Figure 2. (a) Furan derivative compounds (experimental) which have been optimized geometry 

with B3LYP/6-31G (d); (b) Compounds derived from furan (prediction) which have been 

optimized for geometry with B3LYP/6-31G (d) 



Molecular Descriptor Calculations 

This corrosion inhibition phenomenon is dependent on various other factors, so experimental 

studies alone cannot explain the interaction behavior between metals and inhibitors. Therefore, 

combining experimental and quantum studies such as QSPR is urgently needed. In this study, the 

QSPR approach focuses on the correlation of the intrinsic properties of each molecule with its 

corrosion inhibition potential. To explore this relationship, researchers developed many models 

to link corrosion inhibitors with some of their molecular properties. So, the value of corrosion 

inhibitors can be predicted through molecular descriptors and can explain the mechanism of 

corrosion inhibition. 

According to the literature, the most relevant descriptors capable of influencing the adsorption of 

inhibitor molecules onto metal surfaces are electronic, structural, and lipophilic indices. By 

considering the three index descriptors, this study uses EHOMO (Highest Occupied Molecular 

Orbital energy), ELUMO (Lowest Unoccupied Molecular Orbital energy), EL-H (Gap energy), μ 

(dipole moment), IP (ionization potential), EA ( electron affinity), ƞ (hardness), σ (softness), χ 

(electronegativity), ∆N (fraction of electron transfer), ω (electrophilicity index), ∆EB-D (back-

donation energy), Log P, Vm (critical volume), and Mr (relative molecular mass) as a descriptor. 

The descriptor values obtained are illustrated in Table 3  
 

 

QSPR Study 

Partial Least Square (PLS) 

Partial least squares is a multivariate statistical technique that can handle many response 

variables as well as explanatory variables at once. Regression Partial Least Squares (PLS) is an 

equation that is commonly used, especially when a large number of molecular descriptors for 

testing a compound are used [38]. 

PLS is intended to predict quantitatively the corrosion inhibitor activity of the compounds 

studied . PLS modeling is generally expressed in the following equation: 

IE cal (%) = a0 + a1EHOMO + a2ELUMO + a3EL-H + a4μ + a5IP + a6EA + a7χ + a8σ + a9η + a10∆N + 

a11ω + a12Log P + a13Mr + a14Vm + a15∆EB-D................................................(1) 

where a0 is the constant of the regression; a1-15 represents the regression coefficient of EHOMO, 

ELUMO, EL-H, μ, IP, EA, χ, σ, η, ∆N, ω, Log P, Mr, Vm, and ∆EB-D, respectively.  

 PLS modeling that has been analyzed from descriptor data, accompanied by statistical 

parameter values, is as follows: 

IE exp (%) = 69.284 + 0.005EHOMO + 0.459ELUMO + 0.913EL-H – 0.377μ – 0.005IP – 0.459EA – 

0.503χ – 17.790σ + 1.826η + 0.223∆N – 0.005ω – 0.424Log P + 0.001Mr + 0.0002Vm – 

7.307∆EB-D........................................................... (2) 

N = 13   R2 = 0.104   SD = 17.392    R2
cv = 667.6667 

Other validation values can be seen in Table 4 

Table 4. PLS Validation 



Observations 13.000 

Sum of 

weights 12.000 

DF 10.000 

R² 0.104 

Std. 

deviation 17.392 

MSE 252.080 

RMSE 15.877 

 

Table 5. Predicted values and PLS modeling residuals 

Observation Weight 
IE exp 

(%) 

Pred(IE 

exp 

(%)) 

Residual Std. residual 
Std. dev. on pred. 

(Mean) 

ECMF 1 96.540 74.683 21.857 1.427 5.169 

FCH 1 89.930 75.905 14.025 0.916 5.022 

FMT 1 89.440 80.631 8.809 0.575 6.599 

FN 1 89.030 73.802 15.228 0.994 5.422 

BFA 1 88.600 75.477 13.123 0.857 5.045 

FAA 1 78.240 73.736 4.504 0.294 5.446 

EF 1 77.340 83.227 -5.887 -0.384 8.365 

MF 1 76.750 77.187 -0.437 -0.029 5.138 

MFF 1 76.140 71.754 4.386 0.286 6.386 

DMFA 1 71.990 83.545 -11.555 -0.755 8.602 

FC  1 64.250 71.620 -7.370 -0.481 6.463 

FFA 1 53.930 82.121 -28.191 -1.841 7.569 

NVF 1 35.960 64.454 -28.494 -1.861 11.832 

 

Based on the PLS modeling in equation 2, the significance of each descriptor vs. the standard 

regression coefficient is presented in Figure 3. 



 

Figure 3. The coefficients of the standard versus the variables in the specified PLS model 

Figure 3 shows that the relevance of corrosion inhibitor values based on molecular structure 

differs from one descriptor to another. However, because the descriptors in the PLS modeling do 

not have the same units, the standard coefficients obtained are only estimates without a real 

scale. It implies that these standardized coefficients cannot be used to determine the real relative 

significance of each descriptor in the regression analysis. Therefore, its usefulness is limited to 

determining the positive or negative effect of the molecular index on the anticorrosive property 

under investigation [39-41].  

In terms of statistical parameters, the value of the coefficient of determination (R2 = 0.104), 

standard deviation (SD = 17.392), dan R2
cv = 667.6667, it appears that PLS does not have a good 

fit in predicting the value of corrosion inhibitors. The residual error value is still large, and there 

is a large difference between IEexp and IEpred.  

E
 H

O
M

O

E
 L

U
M

O

E
 L

-H

μ

IP

E
A χ

σ

η

∆
N

ω

L
o

g
 P

M
r

V
m

∆
E

 B
-D

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

S
ta

n
d

a
rd

iz
e

d
 c

o
e

ff
ic

ie
n

ts

Variable



 

Figure 4. Correlation between IEexp and IEPred with PLS modeling results 

 

Principal Component Regression (PCR) 

The general equations used in PCR are identical to those in PLS regression analysis. PCR 

modeling results are expressed in the following equation: 

IE exp (%) = 1348.903 + 69.943EHOMO + 35.630ELUMO + 47.393EL-H – 26.791μ – 69.943IP – 

35.630EA – 51.559χ – 253.194σ + 94.787η – 173.134∆N + 3.647ω + 12.557Log P + 0.184Mr – 

0.018Vm – 379.151∆EB-D...........................(3) 

N = 13    R2 = 0.976     R2
adj = 0.904     PRESS = 2490.589    

Other validation values can be seen in Table 6 

Table 6. PCR validation 

Observations 13 

Sum of 

weights 13 

DF 3 

R² 0.976 

Adjusted R² 0.904 

MSE 27.033 

RMSE 5.199 

MAPE 2.700 

DW 1.552 

0

20

40

60

80

100

120

140

160

180

0 50 100 150

IE
 e

x
p

 (
%

)

Pred(IE exp (%))



Cp 10.000 

AIC 43.799 

SBC 49.449 

PC 0.184 

Press 2940.589 

Q² 0.129 

 

Table 7. Predicted values and residuals from PCR modeling 

Observation Weight 
IE exp 

(%) 

Pred(IE 

exp (%)) 
Residual Std. residual 

Std. dev. on pred. 

(Mean) 

ECMF 1 96.540 95.510 1.030 0.198 5.093 

FCH 1 89.930 85.799 4.131 0.795 4.298 

FMT 1 89.440 87.374 2.066 0.397 3.040 

FN 1 89.030 90.669 -1.639 -0.315 4.867 

BFA 1 88.600 87.386 1.214 0.233 4.945 

FAA 1 78.240 77.614 0.626 0.120 4.019 

EF 1 77.340 76.071 1.269 0.244 4.735 

MF 1 76.750 81.167 -4.417 -0.849 3.700 

MFF 1 76.140 77.972 -1.832 -0.352 4.928 

DMFA 1 71.990 76.893 -4.903 -0.943 4.133 

FC  1 64.250 63.549 0.701 0.135 4.950 

FFA 1 53.930 51.711 2.219 0.427 4.881 

NVF 1 35.960 36.427 -0.467 -0.090 5.154 

 

 According to the statistical validation results, PCR has better quality in determining the 

corrosion inhibitor value of furan derivative compounds compared to PLS. It is indicated by 

good validation results, such as the coefficient of determination (R2 = 0.976) and the adjusted 

coefficient of determination (R2
adj = 0.904). From Table 7, it can also be seen that the residual 

value is small and stable; nothing is more than 5 or -5. Figure 5 also shows that all calculation 

results are close to fitting data. 



 

Figure 5. Correlation between IEexp and IEPred with PCR modeling results 

 

 

3.2.3 Multiple Linear Regression (MLR) 

 In this research, the MLR model used is the backward model. In MLR, some less 

influential descriptors are omitted, and only the most influential descriptors are taken. The results 

of MLR modeling are expressed in the following equation: 

IE exp (%) = 1235.047 + 286.773ELUMO – 27.310μ – 192.138∆N + 3.642ω + 12.627Log P + 

0.163Mr............................(4) 

N = 13     R2 = 0.973         R2
adj = 0.946       PRESS = 446.163 

Table 8. MLR validation table 

Observations 13 

Sum of 

weights 13 

DF 6 

R² 0.973 

Adjusted R² 0.946 

MSE 15.294 

RMSE 3.911 

MAPE 3.008 

DW 2.220 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

IE
 e

x
p
 (

%
)

Pred(IE exp (%))



Cp 4.394 

AIC 39.405 

SBC 43.360 

PC 0.091 

Press 446.163 

Q² 0.868 

 

Table 9. Predictive values and residuals of MLR modeling 

Observation Weight 
IE exp 

(%) 

Pred(IE 

exp (%)) 
Residual 

Std. 

residual 

Std. dev. on pred. 

(Mean) 

ECMF 1 96.540 96.570 -0.030 -0.008 2.990 

FCH 1 89.930 86.414 3.516 0.899 2.934 

FMT 1 89.440 87.482 1.958 0.501 2.098 

FN 1 89.030 90.822 -1.792 -0.458 3.348 

BFA 1 88.600 85.967 2.633 0.673 2.253 

FAA 1 78.240 78.073 0.167 0.043 2.670 

EF 1 77.340 75.763 1.577 0.403 3.294 

MF 1 76.750 82.280 -5.530 -1.414 2.273 

MFF 1 76.140 76.891 -0.751 -0.192 3.117 

DMFA 1 71.990 76.499 -4.509 -1.153 3.028 

FC  1 64.250 61.808 2.442 0.625 2.316 

FFA 1 53.930 52.126 1.804 0.461 3.077 

NVF 1 35.960 37.445 -1.485 -0.380 3.457 

 

The results of quantitative structure and property modeling with Multiple linear regression 

(MLR) analysis show high values on R2 and R2 adj data. The number is 0.973 and 0.946, 

respectively. From Table 9, the residual error results are also small and stable. In addition, in 

Figure 6, it can be seen that all the data are close to the fitting data, which indicates that the 

results are good.  

 



 

Figure 6. Correlation between IEexp and IEPred with MLR modeling results 

3.2.4 Principal Component Analysis (PCA) 

 A statistical method for qualitative analysis is principal component analysis (PCA) [42]. 

By condensing a large set of correlated variables into a smaller, uncorrelated set of variables, this 

descriptive method can be used to reduce the dimensionality of huge data sets. The name of these 

new variables is main components. It enables the practitioner to cut down on the amount of 

variables and streamline the information [43].  PCA is performed to reduce the dimensions of a 

large data set by changing the large set of variables to be smaller and uncorrelated. The new 

variable is called the principal component or principal axis. It allows the researcher to reduce the 

number of variables and make the information less overwhelming. 

In this study, PCA analysis was carried out to determine the relationships between 

descriptors. Thus, in the end, it was possible to determine which data analysis technique was 

most suitable for quantitative structure and property relation modeling. The results of PCA 

analysis of 13 furan derivatives and their descriptors can be seen in figure 7. 
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Figure 7. Principal components dan variannya 

  

Table 10. Contribution of descriptors to the principal components F1, F2, and F3 

Descriptor  

F1 F2 F3 

Correlation 
Contribution 

(%) 
Correlation 

Contribution 

(%) 
Correlation 

Contribution 

(%) 

EHOMO 0.787 5.970 0.466 10.220 0.329 10.448 

ELUMO 0.993 9.513 0.050 0.118 0.023 0.050 

EL-H 0.945 8.618 -0.207 2.012 -0.164 2.593 

μ -0.894 7.718 -0.012 0.006 -0.081 0.641 

IP -0.787 5.970 -0.466 10.220 -0.329 10.448 

EA -0.993 9.513 -0.050 0.118 -0.023 0.050 

χ -0.970 9.081 -0.180 1.525 -0.118 1.340 

σ -0.911 8.010 0.219 2.254 0.279 7.498 

η 0.945 8.618 -0.207 2.012 -0.164 2.593 

∆N 0.987 9.405 0.042 0.082 0.061 0.362 

ω -0.840 6.802 -0.105 0.520 -0.034 0.112 

Log P -0.310 0.927 -0.207 2.009 0.710 48.650 

Mr -0.216 0.452 0.796 29.801 -0.352 11.968 

Vm -0.285 0.786 0.888 37.092 -0.082 0.652 

∆EB-D -0.945 8.618 0.207 2.012 0.164 2.593 
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 The contribution of descriptors to the principal components F1, F2, and F3 are 

summarized in table 10. According to the table, it can be seen that ELUMO, EL-H, μ, EA, ƞ, σ, χ, 

∆N, ω, ∆and EB-D have significant contributions to F1. For the descriptors, MR and Vm 

contribute significantly to F2. Whereas EHOMO, IP, and Log P contributed strongly in F3. 

The projection of the first three main component variables, namely F1, F2, and F3, based 

on their percentage contribution in the two correlation graphs is illustrated in Figure 8. The axes 

take into account as much variability in the data as possible. They represent 69.11%, 14.19%, 

and 6.91%, respectively, of the total variance, and the total percentage of information is 

estimated at 90.21%. This value is representative enough to describe the information in the data 

set. 

  

Figure 8. Correlation circles between principal compounds F1-F2 dan F1-F3 

The correlation coefficient in the matrix provides information about the high or low 

relationship between the descriptors. Generally, highly correlated descriptors (R ≥ 0.75) are not 

included to reduce the redundancy that exists in the matrix data [44-46]. Table 11 indicates that 

there is perfect negative collinearity (R = -1) between EHOMO and IP; ELUMO and EA; EL-H and 

∆EB-D; as well as η and ∆EB-D. In addition, there are other strong negative collinearities such as 

EHOMO and EA (R= -0.815), EHOMO and χ (R= -0.905), and so on. Perfect positive collinearity 

(R=1) can be found in EL-H and η. Other positive collinearities were also identified in EHOMO and 

ELUMO (R = 0.815), EHOMO and ∆N (0.819), etc. This indicates that these variables are redundant. 

According to the results of the PCA descriptive data, there appears to be strong 

collinearity between descriptors; in other words, some explanatory variables are linear 

combinations of others. In this case, the matrix (X'X)-1 cannot be inverted because there are 

many variables with perfect collinearity. Therefore, some statistical analysis cannot be used in 

this data. Statistical analysis such as MLR cannot be used to predict the value of corrosion 
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inhibitors because it will lose most of the useful information in making the desired model. Apart 

from MLR, Multiple Polynomial Regression (MPR) also cannot be used. 

The proof regarding the collinearity problem is also emphasized in Table 11. If the 

tolerance value is less than 0.2 and or the VIF value is more than 10, then it is certain that there 

is a collinearity problem. Table 11 shows that only a few descriptors meet these requirements, 

and most do not. It indicates that there is a collinearity problem in the data. 

Table 11. Tolerance and VIF descriptors 

 Tolerance VIF 

EHOMO 0.000  

ELUMO 0.000  

EL-H 0.000  

μ 0.005 186.335 

IP 0.000  

EA 0.000  

χ 0.000  

σ 0.002 490.173 

η 0.000  

∆N 0.000 2610.161 

ω 0.007 150.711 

Log P 0.466 2.144 

Mr 0.149 6.720 

Vm 0.165 6.072 

∆EB-D 0.000  

 

 

 

Figure 9. Comparison diagram of IE% values obtained with PLS, PCR and MLR 
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Figure 10. The residual error (RE) between the the experimental and the predicted IE% 

calculated with PLS, PCR and MLR 

 

3.3 Monte Carlo Simulation 

 The previous statistical analysis resulted in a temporary conclusion that the quantitative 

structure and property relation modeling results with PCR analysis were the best. From these 

conclusions, the values of prediction inhibitor efficiency (IE%pred) were sought for four 

compounds with unknown corrosion inhibitor values. IE%pred value data for the four compounds 

are presented in table 13  

From the table, it can be seen that there are several promising IEpred values, such as the 

BMOPF compound (IEpred(%) = 169.37) and FMP (IEpred(%) = 100.81). Furthermore, Monte 

Carlo simulations of inhibitor compounds for iron (Fe) in a water medium were carried out to 

find the adsorption energy of each compound. Monte Carlo simulation results are shown in table 

12 and figure 9 (viewed from the side). Monte Carlo simulation results (viewed above) are 

illustrated in figure 10  

Table 12. Adsorption energy prediction compounds 

No. Senyawa Adsorption energy 

inhibitor (kJ/mol) 

Adsorption energy 

water (kJ/mol) 

IE pred 

(%) 

1. BMOPF -272.96906317 -5.03186855 169.3773 

2. BOMF -160.04338881 -6.78146263 78.68098 

3. FMP -109.55142600 -6.67838206 100.8158 

4. NAA -122.62129424 -2.11851366 66.17984 
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Figure 11. Visualization from Monte Carlo simulation of 4 prediction compounds, (a) BMOPF; 

(b) BOMF; (c) FMP; (d) NAA 

Conclusion 

 From the analysis and discussion above, the following conclusions are obtained: 

• 17 compounds of furan derivatives divided into 13 main compounds and 4 predictive 

compounds have been investigated theoretically and statistically as corrosion inhibitors 

for iron (Fe) metal. 

• Calculating molecular descriptors using the DFT quantum method makes it possible to 

correlate the corrosion inhibition efficiency (IE%) with molecular structure using the 

QSPR approach. 

• Qualitative analysis by PCA allows researchers to examine redundancy and collinearity 

between proposed descriptors. 

• The established regression analysis results show that the studied molecules' anticorrosive 

activity can be explained based on their electronic and structural properties. 

• Examination of the quantitative analysis results showed that PCR analysis was the best 

statistical method compared to PLS and MLR. It is proven through the data's validation 

results (R2 = 0.976; R2
adj = 0.904) and collinearity analysis. 

• The results of QSPR modeling analysis with PCR are proposed to predict the corrosion 

inhibitor value of new furan derivative compounds. 

• The prediction results for this study's 4 new derivative compounds are very promising, 

especially for the BMOPF compound (IE%pred = 169.37) and the FMP compound 

(IE%pred = 100.81). 
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