WOODHEAD PUBLISHING SERIES IN CIVIL AND STRUCTURAL ENGINEERING

RECYCLED CONCRETE TECHNOLOGIES AND PERFORMANCE

Edited by VIVIAN W. Y. TAM MAHFOOZ SOOMRO ANA CATARINA JORGE EVANGELISTA

Contents

	List of contributors Acknowledgment				
1	Introduction Ana Catarina Jorge Evangelista, Vivian W.Y. Tam and Mahfooz Soomro		1		
	1.1	Construction and demolition waste - overview	1		
	1.2	Sustainability and the benefits of LCA – recycled concrete	3		
	1.3	Outline of the book	5		
		References	8		
2	Pro	duction of cement and its environmental impact	11		
	Mahfooz Soomro, Vivian W.Y. Tam and Ana Catarina Jorge Evangelista				
	2.1	Introduction	11		
	2.2	Cement manufacture	11		
	2.3	Cement chemical composition	16		
	2.4	Clinker phase composition	17		
	2.5	Properties of clinker phases	20		
	2.6	Cement hydration products	24		
	2.7	Types of cements and blended cements	26		
	2.8	Environmental impact of cement production	35		
	2.9	Summary	43		
		References	43		
3	Industrial and agro-waste materials for use in recycled concrete Mahfooz Soomro, Vivian W.Y. Tam and Ana Catarina Jorge Evangelista		47		
	3.1	Flyash	47		
	3.2	Waste glass as Pozzolan	59		
	3.3	Silica fume	67		
	3.4	Rice husk ash	73		
	3.5	Sugarcane bagasse ash (SCBA)	77		
	3.6	Palm oil fuel ash (POFA)	84		
	3.7	Life cycle assessment (LCA) of recycled concrete containing			
		by-products and plant materials	90		
	3.8	Summary	96		
		References	97		

4	•	cled aggregates and their properties	119			
	Fernando L. Gayarre, Carlos López-Colina, Lara Carral, Miguel A. Serrano, Jesús M. Suárez and Rebeca Martínez					
	0					
	4.1	Introduction	119			
	4.2	Aggregates from CDW	120			
	4.3	Composition of RMA and RCA	122			
	4.4	Relationship between physical properties	133			
	4.5	Blast furnace slag (BFS)	134			
	4.6	Electric arc furnace slag (EAF-slag)	136			
	4.7	Coal fly ash	137			
	4.8	Scrap tires	140			
	4.9	Municipal solid waste (MSW) combustor ash	143			
	4.10	Inert/incinerated sewage sludge	144			
	4.11	Urban plastic waste	146			
	4.12	Waste glass	149			
	4.13	Foundry sand	151			
	4.14	Summary	152			
		References	154			
5	Quality improvement of recycled aggregate 16					
•	Mahfooz Soomro, Vivian W.Y. Tam, Mitsuhiro Shigeishi,					
	Nangooz Soomo, vivian W.1. Tam, Masanto Singeism, Ni Nyoman Kencanawati, Takao Namihira and Katarzyna Kalinowska					
	5.1		161			
		Introduction	101			
	5.2	Quality improvement of recycled aggregate using	177			
	50	thermal-mechanical-chemical process	167			
	5.3	Alternative uses of removed residual mortar	177			
	5.4	Recycling of concrete rubble using thermo-mechanical treatment	181			
	5.5	Summary References	188 189			
		References	109			
6	Recycled concrete for structural applications 19					
	João Pacheco, Jorge de Brito, Carlos Chastre and Luís Evangelista					
	6.1	Coarse recycled aggregates for concrete	195			
	6.2	Coarse recycled aggregate produced from concrete waste	197			
	6.3	Mechanical behavior of recycled aggregate concrete	198			
	6.4	Overview of the structural behavior of recycled aggregate concrete	203			
	6.5	Model uncertainty of recycled aggregate concrete design	204			
	6.6	Concluding remarks	221			
		Acronyms and Symbols	223			
		References	223			

7	Recycled concrete for nonstructural applications <i>Wei Chen and Ruoyu Jin</i>				
	7.1 7.2 7.3	Introduction Use of recycled concrete in nonstructural applications Practices and issues of adopting recycled aggregates in new	233 234		
	7.4 7.5 7.6	applications Types of nonstructural members Case studies Summary References	246 248 255 258 259		
8	Durability of recycled concrete Nariman J. Khalil		265		
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	Introduction Permeability Chemical attacks on concrete Freeze and thaw cycles Resistance to carbonation Resistance to corrosion Alkali-silica reaction Gas penetration Future advances References	265 266 268 271 273 274 275 276 277 278		
9	ceme	Alternative binders—high volume bauxite red mud alkali activated 24 cements and concretes 24 Pavel V. Krivenko, Oleksandr Kovalchuk and Victoria Zozulynets 24			
	9.1 9.2	Introduction Role of red mud in the microstructure formation of hardened cement paste	283 287		
	9.3 9.4	Compositions and properties of red mud containing alkali activated materials Conclusions References	292 304 304		
10	Life cycle assessment for structural and non-structural concrete3Karoline Figueiredo and Assed Haddad				
	10.1 10.2 10.3 10.4 10.5 10.6	Introduction LCA phases and related concepts Databases available LCA-based software tools Life cycle impact assessment (LCIA) Interpretation	309 311 317 318 319 322		

List of contributors

Lara Carral Autonomous University of Aguascalientes, Aguascalientes, Ags., Mexico

Carlos Chastre CERIS, Department of Civil Engineering, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

Wei Chen School of Civil Engineering and Architecture, Ningbo Technical University, Ningbo, Zhejiang Province, People's Republic of China

Jorge de Brito CERIS, Department of Civil Engineering, Architecture and Georesources, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Ana Catarina Jorge Evangelista Engineering Institute of Technology, Perth, WA, Australia

Luís Evangelista CERIS, Department of Civil Engineering, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, Lisbon, Portugal

Karoline Figueiredo Programa de Engenharia Ambiental (PEA), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

Fernando L. Gayarre University of Oviedo, Gijón/Xixón, Asturias, Spain

Assed Haddad Programa de Engenharia Ambiental (PEA), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

Ruoyu Jin School of Built Environment and Architecture, London South Bank University, London, United Kingdom

Luiz Sarti Junior Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil

Katarzyna Kalinowska Faculty of Civil and Environmental Engineering, Bialystock University of Technology, Poland

Ni Nyoman Kencanawati Civil Engineering, University of Mataram, Mataram, Indonesia

Nariman J. Khalil Department of Civil & Environmental Engineering, University of Balamand, Koura, Lebanon

Oleksandr Kovalchuk V.D.Glukhovsky Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Kyiv, Ukraine

Pavel V. Krivenko V.D.Glukhovsky Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Kyiv, Ukraine

Carlos López-Colina University of Oviedo, Gijón/Xixón, Asturias, Spain

Rebeca Martínez University of León, León, Spain

Takao Namihira Institute of Industrial Nano Materials, Kumamoto University, Japan

João Pacheco CERIS, C5Lab - Sustainable Construction Materials Association, Edifício Central Park, Linda a Velha, Portugal

Sheyla Serra Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil

Miguel A. Serrano University of Oviedo, Gijón/Xixón, Asturias, Spain

Mitsuhiro Shigeishi Department of Civil and Environmental Engineering and Architecture, Kumamoto University, Japan

Carlos Soares Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil

Mahfooz Soomro School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, Australia

Jesús M. Suárez University of Oviedo, Gijón/Xixón, Asturias, Spain

Vivian W.Y. Tam School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, Australia

Victoria Zozulynets V.D.Glukhovsky Scientific Research Institute for Binders and Materials, Kyiv National University of Construction and Architecture, Kyiv, Ukraine

Quality improvement of recycled aggregate

5

Mahfooz Soomro¹, Vivian W.Y. Tam¹, Mitsuhiro Shigeishi², Ni Nyoman Kencanawati³, Takao Namihira⁴ and Katarzyna Kalinowska⁵ ¹School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW, Australia; ²Department of Civil and Environmental Engineering and Architecture, Kumamoto University, Japan; ³Civil Engineering, University of Mataram, Mataram, Indonesia; ⁴Institute of Industrial Nano Materials, Kumamoto University, Japan; ⁵Faculty of Civil and Environmental Engineering, Bialystock University of Technology, Poland

5.1 Introduction

By: Mahfooz Soomro and Vivian W.Y. Tam.

Construction industry is a major consumer of resources. Increasing activities in infrastructure development, renovation, urbanization and industrialization around the globe are the key drivers, which increase the demand for virgin aggregate consumption in construction projects and it is growing year on year.

Concrete is widely used as a basic material for construction and infrastructure. About 500 million tons of concrete were produced in Japan around 1990s. In recent years, around 35 million tons of demolished concrete are being generated every year. Due to the regulations in Japan, not a little concrete is illegally dumped or mixed with construction soil that is not properly treated as waste. At present, 95% of the concrete is recycled using cascade recycling and subsequently reused as a low-quality road subbase. Few advanced processing to reproduce high-quality recycled aggregate from demolished concrete are carried out at present. Soon, a substantial amount of concrete will reach its end of life from the construction undertaken during the economic growth of 1960 and 1970s, and the generation of demolished concrete is expected to rapidly increase and may create extremely serious environmental problems (Shima et al., 2005b).

The demolition of concrete structures produces a large amount of waste and most of it end-up in the landfills. It will lead to a potential problem of filling up the landfills soon because more of the old and dilapidated concrete structures need to be demolished (Azúa et al., 2019). The waste is also generated from the construction process. The construction sector in Europe generates 50% of the waste originating from the construction and demolition waste (CDW) of all the total waste. Until now, concrete and mortar are the most popular materials in the construction world. In addition, for every ton of material mined, on average more than 85% is wasted (Villoria-Sáez et al., 2020). CDW has become one of the major problems in the construction industry as it directly impacts the environment. It is estimated that around 35% of CDW ends up