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Abstract  The growing population in the community 
has led to an increase in the need for community 
infrastructure. Civil engineers have to maintain the safety 
of the community in the design of urban areas' service 
infrastructure. The infrastructure must resist the load 
caused by extreme events, such as rainstorms and floods. 
Therefore, civil engineers must design the infrastructure 
based on the precise data parameters. Engineers obtain the 
precise parameters of a return period through frequency 
analysis. The precise parameters will produce an 
acceptable data distribution. Civil engineers can use the 
Chi-Square method to test the fitness of the data 
distribution type. However, the original way to get the 
Expected Frequency is complicated because it uses the 
integral solving method. This weakness causes the 
engineers to linger to test the distribution suitability. This 
article proposes a modification to ease obtaining the 
expected frequency in the Chi-Square test. This article 
demonstrates the proposal using rainfall and river flow data 
around the globe. The demonstration results show that the 
proposal is easy to implement. The method accurately 
identifies the type of rainfall and river flow data 
distribution. Among the seven stations, five groups of data 
follow a lognormal distribution; one group of data follows 
a normal distribution. One other group of data follows an 
exponential distribution. 

Keywords  Rainstorms, Data Distribution, Return 
Period, Chi-Square Test 

1. Introduction
Design discharge is essential information in water 

construction design [1-3]. Researchers and civil engineers 
use design discharges to obtain the dimensions of water 
structures. Unrealistic design discharge can lead to the 
failure or the over-budget of construction [4]. Researchers 
and engineers derive discharge designs based on an 
acceptable type of discharge data distribution in the 
frequency analysis [5-8]. However, there are difficulties in 
recognizing the distribution. So far, the well-known 
methods for estimating the parameters of distribution data 
are the Method of Moments, the Method of Maximum 
Likelihood Estimation, the Method of Probability 
Weighted Moment, and the Richardson Method [9-11]. 
Those methods have some weaknesses [12], including: (1) 
an iterative procedure for maximum likelihood estimation 
is based only on a complete sample of various population 
parameters; (2) the solution is only based on a linear 
system; (3) the method cannot find the precise parameter if 
the system has more than one peak (4), the method cannot 
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find the parameter if the distribution members are infinite, 
(5) the solution requires complex mathematical solving 
skills, such as integral approach [13-16]. 

To anticipate the weaknesses above, engineers utilize 
the statistical parameters of distribution to understand the 
type of distribution [17, 18]. The distribution parameters 
are the skewness coefficient and the kurtosis coefficient. 
However, engineers have to compare the frequency of the 
observed data to the expected frequency to ensure the type 
of distribution [19, 20]. The expected frequency in the 
Chi-Square Test is the theoretical frequency that we expect 
to occur in the data according to the type of distribution. 
Generally, researchers and engineers calculate the 
expected frequency based on the equation of the data 

distribution curve or the Probability Density Function 
(PDF) plot. Researchers and engineers can draw PDF plots 
using a mathematical solution approach to the theoretical 
distribution function [13-16]. Fig. 1 shows the PDFs of 
several distribution functions. 

Statisticians and mathematicians use an integration 
approach to calculate the area under the PDF curve as the 
estimate of expected frequency [13-16]. However, this 
integration approach is complicated; consequently, the 
chi-square test has become unpopular among engineers. 

This paper proposes a modification of Chi-Square Tests 
to identify the data distribution. This technique helps 
engineers obtain the type of rainfall and river flow data 
distribution without having a problem. 

Figure 1.  The Plots of Probability Density Function 
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2. Materials and Methods

2.1. Chi-Square 

Pearson [19] developed the method of Chi-Square for 
the goodness of fit test. The Chi-Square tests the 
similarity between observed and theoretical data 
distribution based on the sum of squares of the difference 
in the data classes. Pearson gave the equation (1) below 
[21, 22]. 

χ2 = Σ (OF – EF)2 / Σ (EF)              (1) 

where: χ is Pearson's cumulative test statistic, OF is the 
number of observation Frequencies, EF is the expected 

(theoretical) frequency. 
A calculated Pearson's Chi-square smaller than the 

critical Chi-square from the table indicates the observed 
data follow the expected distribution. Table 1 presents 
critical Chi-square. Fig. 2 shows the technique of using 
the Chi-square method for the identification of rainfall 
and river flow data distribution types. 

Fig. 2 shows the Chi-square test technique to identify 
the distribution type of rainfall and river flow data. This 
technique contains three parts of analysis. The first part is 
to prepare data into classes according to the number of 
data. The second part is to obtain the expected frequency 
and the modification. Finally, the third part examines the 
acceptability of the data distribution. 

Table 1.  Percentage Points of the Chi-Square Distribution 

Degree of 
Freedom 

Probability of a Larger Value of χ2 

0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01 

1 0.00 0.00 0.01 0.10 0.45 1.32 2.71 3.84 6.63 

2 0.02 0.10 0.21 0.57 1.38 2.77 4.61 5.99 9.21 

3 0.11 0.35 0.58 1.21 2.36 4.11 6.25 7.81 11.34 

4 0.29 0.71 1.06 1.92 3.35 5.39 7.78 9.49 13.34 

5 0.55 1.14 1.61 2.67 4.35 6.63 9.24 11.07 15.09 

6 0.87 1.63 2.20 3.45 5.34 7.84 10.64 12.59 16.81 

7 1.23 2.16 2.83 4.25 6.34 9.04 12.02 14.07 18.48 

8 1.64 2.73 3.49 5.07 7.34 10.22 13.36 15.51 20.09 

9 2.08 3.32 4.16 5.89 8.34 11.39 14.68 16.92 21.67 

10 2.55 3.32 4.16 5.89 8.34 11.39 14.68 16.92 21.67 

(Source: Devore, 1995) 



Civil Engineering and Architecture 11(3): 1306-1323, 2023 1309 

Figure 2.  The Proposed Process Diagram 
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2.2. Chi-Square Calculations 

2.2.1. The Number of Class 
The Chi-Square calculation needs to group the data 

based on an interval to count the frequency of occurrence. 
The data grouped into classes used equation (2) [23, 24, 
20]. 

k = 1 + 3.322 (log10 (n))     (2) 

where k is the number of class, n is the number of data 

2.2.2. The Range of Data 
The range of data shows how the data spreads from the 

smallest to the largest. Equation (3) obtains the range 

R = H – L     (3) 

where R is the range of data, H is the largest value of 
data, L is the smallest value of data. 

2.2.3. The Interval of Class 
Equation (4) obtains the interval of class 

I = R / k   (4) 

where I is the interval of class, R is the range of data, k is 
the number of class. 

2.2.4. The Degree of Freedom 
The degree of freedom (DF) is the number of 

independent variables in the data set, which still 
independently maintain fixed parameters [25,26]. The 
equation of the degree of freedom for the Chi-Square 
calculation is 

𝐷𝐹 = 𝑘 − 1            (5) 

where DF is the Degree of Freedom, k is the number of 
classes. 

2.2.5. The Coefficient of Skewness 
Some researchers use the Coefficient of Skewness (Cs) 

to identify whether the data follow a symmetrical 
distribution. Symmetrical distributions have Cs equal to 
zero. Otherwise, the distribution is asymmetrical. The two 
types of asymmetrical distributions are positive and 
negative asymmetrical distributions. Pearson gave the 
equation (6) to calculate the Coefficient of Skewness (Cs) 
[27-30]. 

Cs = [n/(n-1)(n-2)] Σ [(xi-µ)/σ)3]    (6) 

where Cs is the Coefficient of Skewness, n is the number of 
data, xi is the individual data, µ is the average of data, and σ 
is the standard deviation of data. 

2.2.6. The Modification of the Expected Frequency 
Calculation 

The modification is replacing the original method of 
calculating the area of a PDF curve based on an 
integration [19, 13-16] with the technique of measuring 
the height of the curve. The solution becomes simpler. 
The modification contains five following steps: 

Step 1: Get the PDF curve based on the Coefficient of 
Skewness obtained using the equation (6), 

Step 2: Divide the abscissa of the curve according to 
the number of classes, 

Step 3: Obtain the height of each class, 
Step 4: Sum all of the heights of the class, 
Step 5: Determine the Expected Frequency of each 

class by the height line of each class divided by the total 
height, then multiplied by the number of data. 

The following section will explain every step of the 
modification calculations. 

2.3. Case Study 

This section presents several case studies to 
demonstrate the application of the proposed technique. 
Table 2 presents the list of stations used to demonstrate 
the proposed modification. 

Table 2.  The list of stations 

No Name of 
Station Country Type of 

Data 
Start 
Year 

End 
Year 

# of 
data 

1 Semongkat Indonesia Rainfall 1997 2021 25 

2 Abaurrea 
Alta Spain Rainfall 1961 2020 60 

3 Nelspruit South 
Africa Rainfall 1961 2015 55 

4 Oxford UK Rainfall 1853 2022 170 

5 Ouse UK River 
Flow 1886 2021 136 

6 Nicholson Canada River 
Flow 1911 2012 102 

7 Brewarrina Australia River 
Flow 1892 2021 130 

Table 2 shows representative rainfall and river basin 
stations from around the world. The number of years 
varies from 25 to 170 years to represent the availability of 
short and long data records. The use of short and long data 
records in the demonstration ensured the acceptance of the 
proposed modified technique on the various availability of 
data. 

Fig. 3 shows the Graphs of Data from the 7 stations. 
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Figure 3.  The Graphs of Data 

This paper will explain the Chi-Square calculations of Semongkat data in detail, while the other station's data 
calculations are presented in Table 7 to Table 12. Table 3 presents the Historical Rainfall Data from the Semongkat 
Station, Sumbawa – Indonesia. 

Table 3.  The Maximum Daily Rainfall Data from the Semongkat Station 

No Year Xi No Year Xi 

1 1997 145.2 14 2010 86.2 

2 1998 92 15 2011 62.3 

3 1999 162.3 16 2012 122.3 

4 2000 96.6 17 2013 100 

5 2001 115.3 18 2014 113.5 

6 2002 146.2 19 2015 117.5 

7 2003 98.7 20 2016 92 

8 2004 145.7 21 2017 145 

9 2005 86.4 22 2018 67.5 

10 2006 76.8 23 2019 78.3 

11 2007 87.8 24 2020 221.1 

12 2008 82.4 25 2021 56.4 

13 2009 189.3 

2.3.1. The Demonstration of the Proposed Modification to obtain the Expected Frequency 
Step 1: Getting the PDF of based on the Coefficient of Skewness obtained using the equation (6), 

Cs = [25/(25-1)(25-2)] (23.40537)]= 1.060026 
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The PDF of data distribution that has Cs > 0 is shown in Fig. 4. 

Figure 4.  A PDF Plot of Lognormal Distribution 

Step 2: The Division of the abscissa as the classes 
Using Equation (2), the number of class (k) is 

k = 1 + 3.322 (log10 (25)) = 5.643957 ≈ 6 classes 

Based on the calculation of k above, the abscissa of the PDF has to be divided into 6 parts to indicate 6 classes. Fig. 5 
shows the abscissa of the PDF Plot is divided into six parts. 
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Figure 5.  The six parts of PDF Plot 

Using Equations (3), the range of data (R) is 

R = 221.1 – 56.4 = 164.7 

Using Equation (4), the interval of class is 

I = 164.7 / 6 = 27.45 

The first upper bond is the sum of the smallest value of data and the class interval, as shown below: 

The First Upper Bond = 56.4 + 27.45 = 83.85 

The first lower bond is zero. The succeeding lower bonds are the previous upper bonds. 

The second lower bond = The First Upper Bond = 83.85, etc. 

The succeeding upper bonds are the sum of the lower bond and the class interval. 

The Second Upper Bond = 83.85 + 27.45 = 111.3, etc. 

Table 4 shows the classes with the class interval. 

Table 4.  The Classes with the class interval 

No Lower Bond Upper Bond Classes 

1 0 83.85 0 < X ≤83.85 

2 83.85 111.3 83.85 < X ≤ 111.3 

3 111.3 138.75 111.3 < X ≤138.75 

4 138.75 166.2 138.75 < X ≤ 166.2 

5 166.2 193.65 166.2 < X ≤193.65 

6 193.65 221.1 193.65 < X ≤ 221.1 
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Step 3: Obtaining the high line of each class. The red lines in Fig. 6 represent the high lines 

Figure 6.  The height lines in the PDF data from Semongkat 

Fig. 6 shows H1 is 0.031, H2 is 0.105, H3 is 0.039, H4 is 0.010, H5 is 0.001, and H6 is 0.000. 

Step 4: The total of all high lines. 
The sum of high lines is 0.186 

Step 5: The Expected Frequency. Table 5 shows the calculation of the Expected Frequency 

Table 5.  The Calculation of Expected Frequency 

Classes Calculation of EF EF 

0 < X ≤83.85 =(0.031/0.186)*25 = 4.16 ≈ 4 

83.85 < X ≤ 111.3 =(0.105/0.186)*25 =14.11 ≈ 14 

111.3 < X ≤138.75 =(0.039/0.186)*25 =5.24 ≈ 5 

138.75 < X ≤ 166.2 =(0.010/0.186)*25 =1.34 ≈ 2 

166.2 < X ≤193.65 =(0.001/0.186)*25 =0.13 ≈ 0 

193.65 < X ≤ 221.1 =(0.000/0.186)*25 =0.00 ≈ 0 

Total 25 

H1

H2

H3

H4 H5 H6
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The next chi-square calculation is in Table 6. 

Table 6.  The Chi-Square Calculation 

No Class OF EF OF-OF (OF-EF)2 /EF 

1 0 < X ≤83.85 6 4 2 1 

2 83.85 < X ≤ 111.3 8 14 -6 2.57 

3 111.3 < X ≤138.75 4 5 -1 0.2 

4 138.75 < X ≤ 166.2 5 2 3 4.5 

5 166.2 < X ≤193.65 1 0 1 0 

6 193.65 < X ≤ 221.1 1 0 1 0 

Total 25 25 8.27 

Table 6 shows that the calculated Chi-Square is 8.27. The calculated Chi-Square has to be smaller than the critical 
Chi-Square. 

2.3.2. Degree of Freedom 
Using Equation (5), the Degree of Freedom (DF) is 

DF = k – 1 = 6 - 1 = 5 

Table 1 shows the critical Chi-Square value based on the degree of freedom of 5 with a significant error of 5% is 11.70. 
So, the calculated Chi-Square is smaller than the critical Chi-Square. The calculation shows that the rainfall data from the 
Semongkat follows a Lognormal Distribution. 

Figure 7.  The height lines in the PDF data from the Abaurrea Alta 

The rainfall data from Abaurrea Alta has a coefficient of skewness of 0.85. The predicted distribution is lognormal. Fig. 
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7 shows the PDF of a lognormal distribution. The high lines of the PDF are 0.005, 0.95, 1.62, 0.9, 0.3, 0.1, and 0.02 for H1 
to H7, respectively. The sum of the high lines is 3.94. Table 7 shows the Chi-Square calculation of data from the 
Abaurrea Alta. 

Table 7.  The Chi-Square Calculation of Data From the Abaurrea Alta 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤43.6 4 0 0 

2 43.6 < X ≤55.8 16 15 0.07 

3 55.8 < X ≤ 68.1 22 25 0.36 

4 68.1 < X ≤80.3 9 14 1.79 

5 80.3 < X ≤ 92.5 4 5 0.2 

6 92.5 < X ≤104.8 4 1 9 

7 104.8 < X ≤ 117 1 0 0 

Total 60 60 11.41 

Table 7 shows that the calculated Chi-Square is 11.41. It is smaller than the critical Chi-Square of 12.59 from the 
degree of freedom of 6. Therefore, the lognormal distribution was accepted for the analysis of the rainfall data from 
Abaurrea Alta. 

Figure 8.  The height lines in the PDF data from the Nelspruit 

The rainfall data from Nelspruit has a coefficient of skewness of 0.09. The predicted distribution is normal. Fig. 8 
shows the PDF of a normal distribution. The high lines of the PDF are 0.0, 0.05, 0.25, 0.4, 0.25, 0.05, and 0.0 for H1 to H7, 
respectively. The sum of the high lines is 1.0. Table 8 shows the Chi-Square calculation of data from the Nelspruit. 
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Table 8.  The Chi-Square Calculation of Data From the Nelspruit 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤18 2 0 0 

2 18 < X ≤36 2 2 0 

3 36 < X ≤ 54 13 14 0.071 

4 54 < X ≤72 19 23 0.696 

5 72 < X ≤ 90 12 14 0.286 

6 90 < X ≤108 4 2 2 

7 108 < X ≤ 126 3 0 0 

Total 55 55 3.05 

Table 8 shows that the calculated Chi-Square is 3.05. It is smaller than the critical Chi-Square of 12.59 from the 
degree of freedom of 6. Therefore, the normal distribution is accepted for the analysis of the rainfall data from the 
Nelspruit. 

Figure 9.  The height lines in the PDF data from the Oxford 

The rainfall data from Oxford has a coefficient of skewness of 0.30. The predicted distribution is lognormal. Fig. 9 
shows the PDF of a lognormal distribution. The high lines of the PDF are 0.0, 0.45, 1.4, 1.52, 0.96, 0.4, 0.16, 0.05, and 0.0 
for H1 to H9, respectively. The sum of high lines is 4.94. Table 9 shows the Chi-Square calculation of data from the 
Oxford. 
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Table 9.  The Chi-Square Calculation of Data From the Oxford 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤71.92 7 0 0 

2 71.92 < X ≤87.04 14 15 0.07 

3 87.04 < X ≤ 102.17 39 48 1.69 

4 102.17 < X ≤117.29 38 52 3.77 

5 117.29 < X ≤ 132.41 35 33 0.12 

6 132.41 < X ≤147.53 22 14 4.57 

7 147.53 < X ≤ 162.66 10 6 2.67 

8 162.66 < X ≤177.78 3 2 0.5 

9 177.78 < X ≤192.9 2 0 0 

Total 170 170 13.38 

Table 9 shows that the calculated Chi-Square is 13.38. It is smaller than the critical Chi-Square of 16.92 from the 
degree of freedom of 8. Therefore, the lognormal distribution is accepted for the analysis of the rainfall data from the 
Oxford. 

Figure 10.  The height lines in the PDF data from Ouse 

The river flow data from Ouse has a coefficient of skewness of 0.59. The predicted distribution is lognormal. Fig. 10 
shows the PDF of a lognormal distribution. The high lines of the PDF are 0.0, 0.7, 1.6, 1.3, 0.6, 0.2, 0.05, and 0.0 for H1 
to H8, respectively. The sum of high lines is 4.45. Table 10 shows the Chi-Square calculation of data from the Ouse. 
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Table 10.  The Chi-Square Calculation of Data From Ouse 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤215.5 6 0 0 

2 215.5 < X ≤268 23 21 0.19 

3 268< X ≤ 320.5 37 49 2.94 

4 320.5 < X ≤373 32 40 1.6 

5 373 < X ≤ 425.5 21 18 0.5 

6 425.5 < X ≤478 8 6 0.67 

7 478 < X ≤ 530.5 6 2 8 

8 530.5 < X ≤583 3 0 0 

Total 136 136 13.90 

Table 10 shows that the calculated Chi-Square is 13.90. It is smaller than the critical Chi-Square of 15.51 from the 
degree of freedom of 7. Therefore, the Lognormal distribution is accepted for the analysis of the river flow data from 
the Ouse. 

Figure 11.  The height lines in the PDF data from Nicholson 

The river flow data from Nicholson has a coefficient of skewness of 0.62. The predicted distribution is lognormal. Fig. 
11 shows the PDF of a lognormal distribution. The high lines of the PDF are 0.0, 0.7, 1.6, 1.3, 0.6, 0.2, 0.05, and 0.0 for 
H1 to H8, respectively. The sum of high lines is 4.45. Table 11 shows the Chi-Square calculation of data from the 
Nicholson. 
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Table 11.  The Chi-Square Calculation of Data From Nicholson 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤304.5 16 0 0 

2 304.5 < X ≤371 15 16 0.0625 

3 371< X ≤ 437.5 25 36 3.36 

4 437.5 < X ≤504 19 30 4.03 

5 504 < X ≤ 570.5 15 14 0.07 

6 570.5 < X ≤637 6 4 1 

7 637 < X ≤ 703.5 2 1 1 

8 703.5 < X ≤770 3 0 0 

Total 101 101 9.53 

Table 11 shows that the calculated Chi-Square is 9.53. It is smaller than the critical Chi-Square of 15.51 from the 
degree of freedom of 7. Therefore, the lognormal distribution is accepted for the analysis of the river flow data from the 
Nicholson. 

Figure 12.  The height lines in the PDF data from Brewarrina 
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Table 12.  The Chi-Square Calculation of Data From Brewarrina 

No Class OF EF (OF-EF)2 /EF 

1 0 < X ≤492 98 102 0.16 

2 492 < X ≤982 18 23 1.09 

3 982 < X ≤ 1471.98 8 5 1.8 

4 1471.98 < X ≤1961.96 1 0 0 

5 1961.96 < X ≤ 2451.95 3 0 0 

6 2451.95 < X ≤2941.93 0 0 0 

7 2941.93 < X ≤ 3431.91 0 0 0 

8 3431.91 < X ≤3921.89 1 0 0 

9 3921.89 < X ≤4411.875 1 0 0 

Total 130 130 3.04 

The river flow data from Brewarrina has a coefficient of 
skewness of 3.71. The predicted distribution is exponential. 
Fig. 12 shows the PDF of an exponential distribution. The 
high lines of the PDF are 0.4, 0.09, 0.02, 0.0, 0.0, 0.2, 0.0, 
0.0, and 0.0 for H1 to H9, respectively. The sum of high 
lines is 0.51. Table 12 shows the Chi-Square calculation of 
data from the Brewarrina. 

Table 12 shows that the calculated Chi-Square is 3.04. 
It is smaller than the critical Chi-Square of 16.92 from the 
degree of freedom of 8. Therefore, an exponential 
distribution is accepted for the analysis of the river flow 
data from the Brewarrina. 

3. Conclusions
Proper distribution of rainfall and river flow data is 

essential in water resource analysis. Improper data 
distribution will cause inaccuracies in the return period 
calculation. The Chi-Square test was created to identify 
the distribution of data. However, the earliest Chi-Square 
method has a weakness, namely the difficulty of 
mathematical calculations to obtain the area under the 
PDF curve. The area represents the data population. This 
paper has proposed a modification to the Chi-Square 
method. The paper has demonstrated the proposed 
modified technique for testing maximum daily rainfall 
and river flow data from several stations to represent 
regions worldwide. The results of this study indicate that 
the proposed modification simplifies the identification 
process of the rainfall and river flow data distribution. 

Among the seven stations, five groups of data follow a 
lognormal distribution; one group of data follows a 
normal distribution, and one other group of data follows 
an exponential distribution. 
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