Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

by Hasyim Hasyim

Submission date: 13-Apr-2023 09:53AM (UTC-0500) Submission ID: 2063509060 File name: 18.pdf (660.84K) Word count: 5485 Character count: 25674 Civil Engineering and Architecture 11(2): 784-793, 2023 DOI: 10.13189/cea.2023.110219

Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

Hasyim, I Dewa Made Alit Karyawan^{*}, Rohani

Department of Civil Engineering, Faculty of Engineering, University of Mataram, Indonesia

Received October 12, 2022; Revised November 27, 2022; Accepted December 22, 2022

Cite This Paper in the Following Citation Styles

(a): [1] Hasyim, I Dewa Made Alit Karyawan, Rohani, "Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia," Civil Engineering and Architecture, Vol. 11, No. 2, pp. 784 - 793, 2023. DOI: 10.13189/cea.2023.110219.

(b): Hasyim, I Dewa Made Alit Karyawan, Rohani (2023). Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia. Civil Engineering and Architecture, 11(2), 784 - 793. DOI: 10.13189/cea.2023.110219.

Copyright©2023 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Road traffic safety is a global concern for people and governments. This is because unsafe roads are among the major causes of traffic accidents, which can result in severe injury and even death. One of the significant ways to minimize traffic movement problems, especially those related to road safety and comfort, is to build a median. Therefore, this research was carried out to determine the performance of roads with and without the median application using the TGH Ibrahim Kholidi road segment, West Lombok Regency, Indonesia. The road section is located in a small town with characteristics such as pedestrians, light and heavy vehicles, as well as traders who use the available inadequate parking spaces, thereby causing high side friction. A quantitative research with data collected by surveying the road section was subsequently employed to determine the traffic volume, speed, side friction, road geometric, and population from the 1997 Indonesian Road Capacity Manual (MKJI-1997) guidelines. The collected data were analyzed using the Separation Planning Procedure. The results showed that using the median increased performance by 45.7% compared to no median. This is in addition to a decrease in the Degree of saturation (DS) from 0.7 to 0.38 or from LOS C to B. Furthermore, the average speed increased from 32.4 km/h (without median) to 33.92 km/h (with median).

Keywords Road Performance, Median, Degree of Saturation, Speed

1. Introduction

Transportation of commodities and people is a fundamental concern of modern society. The urban transportation industry involves an effective system for road traffic management and infrastructure to compensate for user behavior [1][2]. Road traffic safety is increasingly becoming a serious social problem for people and governments globally. This is due to a large number of traffic incidents, especially those that result in the death or serious injury of participants. Therefore, to improve infrastructure, more emphasis should be placed [3] to minimize accidents at high-intensity locations [4]. One of the ways to minimize traffic movement problems by vehicle users, especially regarding road safety and comfort, is through the application of a median [5]. Besides providing safety, the median affects on-road performance, including its capacity. It is part of the road infrastructure installed in the middle of the road that physically separates traffic flows in opposite directions. When installed as a road divider, a median is needed to prevent head-on collisions and reduce driver stress. Furthermore, it contributes to the calculation of road capacity regardless of the difference in the type [6][7].

Every city must make plans to prevent the occurrence of traffic problems through the adequate assessment of

http://www.hrpub.org

any larger investment plans that may impact traffic [8]. This means that the use of the road median on the highway is very influential on the smooth traffic flow and can reduce the number of accidents due to its ability to separate the flow on each lane. Therefore, applying the median on the section of the road can improve users' safety, smoothness, and comfort [3][7]. In this regard, this research aims to determine the effect of the median in improving road performance on the TGH Ibrahim Kholidi road segment, West Lombok Regency, Indonesia. The road section is located in a small town with characteristics of road users, such as pedestrians as well as light and heavy vehicles. The existence of street vendors who use roads and parking spaces comprising of high side friction results in a decrease in road capacity between 14.37% and 26.60% [9]. Furthermore, this research was carried out on a two-lane road without a median and not separated by two directions (Type 2/2 UD). Meanwhile, a road with a median has four separate lanes in two directions (type 4/2 D).

2. Research Method

2.1. Research Procedure

This is a quantitative research with data collected to determine the traffic volume, speed, side obstacles, and geometric road data through the survey method using the procedures in the MKJI-1997 guidelines [10]. Survey data was collected on the same road segment, before (October 9-11, 2021) and after (February 20-22, 2022) using the median. This is in addition to using secondary data, namely population [11]. From the analysis results, a discussion was carried out to determine how to compare road performance with and without the median. The collected data were analyzed using provisions and formulas to calculate the road performance parameters at MKJI 1997. The median research refers to the Separation Planning Procedure [12]. Furthermore, the effect of the median on performance was discussed by comparing the performance of the section road with and without the median.

2.2. Traffic Volume Analysis

Volume is the number of vehicles that pass an observation point during a certain period (unit of time). [5][13][14]. The volume of vehicles is calculated using equation 1.

Q = volume of vehicles (vehicles/hour), N = number of vehicles (vehicles), T = observation time (hours)

 $Q = \frac{N}{T}$

2.3. Side Friction Analysis

The side friction factor is defined as any activity on the side and lane of the traffic lane capable of affecting its normal flow [15]. This factor is the impact on traffic performance from roadside activities such as parking, Parking, and Slow Vehicles (PSV), Exit and Entry of Vehicles (EEV), and Slow Moving of Vehicles (SMV).

2.4. Free Flow Speed Analysis

Traffic flow is the number of motorized vehicles that pass through the road and is measured in a specific time interval [5]. The free flow speed is the desired speed the driver can ride without being hindered or influenced by other users. However, it may be affected by other factors such as vehicle characteristics, drivers, road conditions, weather, and speed limits [10][16][14]. The free flow speed of light vehicles (FV) is defined as the speed at which the current level approaches zero. It is the speed at which the driver chooses to drive a motor vehicle without being influenced by other road users. The free current velocity can be calculated using equation 2.

$$FV = (FVo+FVw) X FFV_{SF} X FFV_{CS}$$
 (2)

Where:

FVo denotes the Basic free flow speed of light vehicles (km/hour), FVw is the effective traffic lane width adjustment (km/hour), FFV_{SF} represents Side obstacle adjustment factor, and FFV_{CS} is the City size adjustment factor.

2.5. Capacity Analysis

Road segment capacity is the maximum stable traffic movement on a road cross-section under geometrics, direction separators, traffic composition, and environmental conditions [10][17].

$$C = Co \ x \ FC_W \ x \ FC_{SP} \ x \ FC_{SF} \ x \ FC_{CS}$$
(3)

Where:

(1)

C denotes Capacity (pcu/hour), Co represents Basic capacity (pcu/hour), FC_W is the Adjustment factor due to traffic lane width, FC_{SP} signifies Directional separation adjustment factor (only for undivided roads), FC_{SF} is the Adjustment factor due to side friction, and FC_{CS} represents City size adjustment factor

2.6. Degree of Saturation Analysis

The Degree of saturation (DS) is the ratio of the volume (flow value) of traffic to its capacity or the ratio of traffic volume Q (pcu/hour) to capacity C (pcu/hour). This is used to illustrate whether a road is problematic or not, and based on the assumption that when it gets closer to its capacity, it becomes the increasingly limited ease of movement [18][10].

Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

2.7. Space Mean Speed Analysis

Space Mean Speed is the road speed based on the average time of all vehicles traveling a certain distance on the road [19][10].

DS

$$Vs = \frac{nd}{\Sigma ti}$$
(5)

Where:

Vs, n, d, and ti denote Space Mean Speed (km/hour), number of data samples, Distance traveled (m or km), and Travel time of the i-th vehicle in seconds, minutes, or hours.

2.8. Level of Service Analysis

The level of service (LOS) is a qualitative measure used to relate geometric features and road segment's cross-sectional properties with the quality of traffic operating characteristics [10]. It comprises the LOS characterized by the operating conditions of vehicles on the road in terms of travel speed, time, freedom of maneuver, density, delay, disturbance, convenience, and passenger comfort. Service levels are grouped into five categories and marked with letters A to F. Where service level A is the facility with the least traffic jams, and F is

(4) the most congested facility. LOS is required when planning new construction, rehabilitating, and reconstructing existing road facilities [14][20]. Table 1 shows the road segment's limiting conditions for each level of service.

3. Results and Discussion

3.1. Data and Analysis of Data without Median (type 2/2 UD)

3.1.1. Road Geometric Data

Based on the direct measurement survey in the field, the geometric conditions of the research site were obtained with flat terrain and asphalt pavement. The width of the traffic lane in both directions =is 9.5 m, while the width of each shoulder on both sides is 2.0 m.

3.1.2. Traffic Flow Data

Traffic flow is used to determine the highest amount of traffic flow that passes through the reviewed road in the busiest period in accordance with the passenger cars unit (pcu) per hour, as shown in Table 2. Figure 1 shows the traffic conditions on the section road being reviewed.

Level of Services	Q/C	Flow condition	Travel speed	Driving comfort
А	0,00-0,19	Smooth flow, low volume, high speed	Drivers decision	Very high physical and psychological
В	0,20-0,44	Stable flow, limited speed, service volume used for out-of-town roads	Slightly reduced due to limited freedom to maneuver	Relatively high
С	0,45-0,74	Stable flow, speed is affected by traffic, volume is suitable for city roads	Governed by the speed of other drivers and roadway characteristics	Decreased perceptibly
D	0,75-0,84	Approaching unstable current, low speed	Severe restrictions caused by frequent stops	Poor
Е	0,85-1,00	Unstable current, low speed, dense volume, or near capacity	Low	Very poor
F	>1,00	Delayed flow, low speed, volume over density	Very low speed caused by stop and go	Extremely poor

Table 1. Level of services index and road conditions limits [14][20]

Note: Q = traffic flow, C = capacity

Civil Engineering and Architecture 11(2): 784-793, 2023

Figure 1. Condition of section road without median type 2/2 UD

		T	West	-East (pcu/	hour)	East-W	Vest (pcu	/hour)	То	tal both direc (pcu/hour)	tions	Total flow
D	Day/Date	Time	HV 1,2	LV 1,0	MC 0,25	HV 1,2	LV 1,0	MC 0,25	ΗV	LV	MC	(pcu/hour
		07.00-08.00	55	219	597	37	173	712	92	392	1308	1793
		08.00-09.00	24	166	399	47	219	728	71	385	1127	1583
s	aturday,	12.00-13.00	7	341	494	31	245	469	38	586	963	1587
Octo	ber 9, 2021	13.00-14.00	4	393	530	46	298	473	49	691	1003	1743
		17.00-18.00	38	287	931	26	317	636	65	604	1567	2235
		18.00-19.00	24	267	764	14	277	524	38	544	1288	1871
		07.00-08.00	64	188	387	62	162	518	126	350	905	1381
		08.00-09.00	54	178	394	56	164	394	110	342	789	1241
Sunday	, October 10,	12.00-13.00	53	224	373	42	171	367	95	395	740	1230
	2021	13.00-14.00	42	270	394	52	270	384	94	540	778	1412
		17.00-18.00	34	260	746	59	267	535	92	527	1281	1900
		18.00-19.00	25	261	588	22	248	461	47	509	1049	1604
		07.00-08.00	23	181	522	20	148	614	43	329	1135	1507
		08.00-09.00	26	215	531	20	204	524	47	419	1055	1520
Monda	y, October 11,	12.00-13.00	53	315	373	20	250	399	73	565	772	1410
	2021	13.00-14.00	22	303	470	17	291	464	38	594	934	1567
		17.00-18.00	16	279	746	26	282	823	42	561	1569	2172
		18.00-19.00	8	249	588	14	258	702	23	507	1290	1820
			Table 3.	Form UR	2-2 MK	JI 1997 v	vithout n	nedian (2	2/2 UD)			
Line	Vehicle type	Light ve	hicle	Hea	wy veh	icle	Ν	Aotorcy	cle			
1,1	Pce direction 1	LV:	1,00	HV:		1,20	MC	:	0,25		Total flow (Q)
1,2	Pce direction 2	LV:	1,00	HV:		1,20	MC	:	0,25			
2	Direction	Vehicle/ hour	Vehicle/ hour	Vehicle hour	e/ V	/ehicle/ hour	Vehic hou		/ ehicle/ hour	Direction %	Vehicle/ hour	pcu/ ho
	(1)	(2)	(3)	(4)		(5)	(6)		(7)	(8)	(9)	(10)
3	E-W (1)	317	317	22		26	181	6	636	40 %	2155	979
4	W-E (2)	287	287	32		38	266	0	931	60%	2979	1256
5	(1)+(2)	604	604	54		64	447	6	1567		5134	2235
6			Directio	onal separa	tor, SP	= Q1/(Q	1+Q2)				40 %	
7]	Factor-	pcu (Fpcu	ı)					0,44

Table 2. Total traffic flow for section road condition type 2/2 UD at peak hours (pcu/hour)

Note: HV= heavy vehicle; LV= light vehicle; MC= motorcycle; E= East; W= West; passenger car equivalent (Pce) ; passenger car unit (pcu)

Table 2 shows that the highest traffic flow value is obtained during rush hour, which can then be entered in Form UR-2 MKJI Urban Road 1997. Direction separation (SP) is determined from the comparison value between the total flow direction 1 (vehicles/hour) and the total flow direction 1 + direction 2 (vehicles/hour). The passenger car unit factor is obtained using equation 6.

$$Fpcu = \frac{Qsmp}{Qkend}$$
(6)
$$pcu = \frac{2235}{5134} = 0,44$$

Table 3 shows the total traffic flow obtained from the survey of the calculation of vehicles crossing the road at the research location with a peak hour period of 17.00 to 18.00. From the survey results, the number of vehicles that pass is 2155 vehicles/hour in direction 1 East-West and 2979 vehicles/hour in direction 2 West-East. The analysis results have a two-way total flow value of 5134 vehicles/hour, which is changed by passenger car units to 2235 pcu/hour.

F

3.1.3. Side Friction Class

The side obstacle class table on the UD type 2/2 road section at the current peak hour conditions was obtained on Saturday, October 9, 2021, from 17.00-19.00.

3.1.4. Moving Vehicles

Table 4 shows that the classification of side friction for road type 2/2 UD is moderate (M). The total weight of occurrence per 200 meters is at 300 to 499, such as industrial areas, and roadside shops, where in special conditions.

3.1.5. Vehicle Space Average Speed

Table 5 shows the data recapitulation of the survey results for measuring the average speed of the vehicle space. It consists of travel time and the number of vehicles from East (E) to West (W) and vice versa. The average vehicle speed (km/hour) was calculated using equation 5.

Side friction type	Symbol	Influence factor	Frequency of occurrence/hour. 200m	Weighted frequency
Pedestrian	PED	0,5	102	51
Parking, vehicle stops	PSV	1,0	92	92
Vehicles in and out	EEV	0,7	217	152
Slow vehicle	SMV	0,4	17	7
		Total		302

Note : PED=Pedestrian

Table 5. Total travel time and number of vehicles and space average speed 2/2 UD from both directions

No	Type of road	Σway	Σ way E-W (seconds)		Σ way	Σ way W-E (seconds)			Number of E-W vehicles (/hour)			Number of W-E vehicles (/hour)		
	MC	LV	HV	MC	LV	HV	MC	LV	HV	MC	LV	ΗV		
1	2/2 UD Saturday 17.00-18.00	785.21	381.80	115.51	1016.12	645.87	84.37	154	68	20	206	106	14	
No	Direction	Type of Road		Day/Hour —			МС		(km/h) LV	Н	V	Aver vehicle (km	speed	
1	East West	2/2 UD		Saturday 1	7.00-18.00		35.30	3	2.06	31	.17	32.	84	
2	West East	2/2 UD		Saturday 1	7.00-18.00		36.49	2	9.54	29	.87	31.	96	

3.1.6. Free Flow Speed

The free flow speed is defined as the speed at the zero flow level. At condition 2/2 UD that is before the installation of the road median, analysis was carried out in both traffic directions. Calculations based on the provisions of the MKJI-1997 guidelines[10], obtained the basic free flow speed (FV₀) of 44 km/hour, with a lane width adjustment factor (FV_w) of 5 to obtain FV₀ + FV_w values of 49 km/hour. FFV_{SF} side drag and FFV_{CS} city size adjustment factors are 0.99 and 0.95. Therefore, the free flow velocity (FV) of 49 x 0.99 x 0.95 equals 46.08 km/hour.

3.1.7. Road Segment Capacity

Based on the provisions of the MKJI-1997 guidelines [10], the Basic Capacity (C0), the Adjustment factor for lane width (FCw), Directional separator (FCSP), Side friction (FCSF), and City size (FCCS), are 2900 Smp/hour, 1.27, 0.94, 0.98, and 0.94. Therefore, using equation 3, the capacity is obtained by multiplying the values of these guidelines such as, 2900x1.27x0.94x0.98x0.94, to obtain 3189 pcu/hour.

3.1.8. Degree of Saturation

The Degree of Saturation (DS) is obtained from the comparison value between the total traffic flow and the capacity of the road segment. From the data analysis results, the value of the DS on the road conditions of the research location (type 2/2 UD) was 0.7. This value is close to the eligibility standard threshold.

3.2. Road Data and Analysis with Median (type 4/2 UD)

3.2.1. Road Geometric Data

Based on the direct measurement survey in the field, the geometric conditions of the research site roads were obtained. The road section under consideration has a flat terrain type with asphalt pavement. Traffic lane width per lane E-W and W-E is 3.25 and 3.25, respectively. The median width is 0.5 meters, with the road facility as a curb. The distance between the curb and the barrier for each side of the road is 1.0 meters.

Figure 2. Section road condition with median type 4/2 D

Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

Dev/Dete	Time	Per la	ne (W-E) (pc	u/hour)	Per lar	ne (E-W) (pc	u/hour)	- Tot
Day/Date	Time	HV	LV	MC	HV	LV	MC	- 10
	07.00 -08.00	13	209	437	13	155	746	15
	08.00-09.00	35	265	429	34	197	546	15
Saturday, February 20, 2022	12.00-13.00	48	377	399	44	280	325	14
Saturday, reordary 20, 2022	13.00-14.00	23	236	331	24	204	327	114
	17.00-18.00	24	320	726	48	305	415	18
	18.00-19.00	24	259	538	17	291	366	14
	07.00 -08.00	2	94	309	8	102	472	98
	08.00-09.00	40	144	392	32	127	406	11
Sunday, February 21, 2022	12.00-13.00	29	328	370	22	265	357	13
Sunday, February 21, 2022	13.00-14.00	23	300	329	14	290	338	12
	17.00-18.00	16	312	628	19	348	615	19
	18.00-19.00	8	262	503	2	292	592	16
	07.00 -08.00	12	234	419	14	405	739	18
	08.00-09.00	38	252	442	20	313	589	16
Monday, February 22, 2022	12.00-13.00	17	200	403	14	278	369	12
wonday, reordary 22, 2022	13.00-14.00	26	283	379	22	304	416	14
	17.00-18.00	37	326	810	42	371	462	20
	18.00-19.00	25	303	671	18	276	488	17

Table 6. Total traffic flow at peak hour type 4/2 D

3.2.2 Traffic Flow Data

The highest amount of traffic flow that passes through the reviewed road segment in the busiest period was obtained on Monday, 11 October 2021, using passenger cars per hour, as shown in Table 6. Figure 2 shows the traffic conditions on the section of the road being reviewed.

Table 6 shows that the highest traffic flow values during peak hours can be entered in Form UR-2 Urban Roads Indonesian Road Capacity Manual (1997). Directional separation (SP) is obtained from the comparison value between the total current direction 1 (vehicle/hour) with the total current direction 1+direction 2 (vehicle/hour). The passenger car unit factor is calculated using equation 7.

Fpcu E-W =
$$\frac{Qpcu}{Qvehicle}$$
 (7)
Fpcu E-W = $\frac{2048}{5849} = 0,35$

Traffic flow per lane is obtained by surveying the calculation of vehicles crossing the road at the research

location, where the peak hour period occurs on Monday from 17.00-18.00 (February 22, 2022). The survey results found that the number of vehicles passing by was 3,597 vehicles/hour in the West-East direction. Conversion into passenger car units is 1,173 pcu/hour, while for the East-West lane, the number of vehicles passing is 2,252 vehicles/hour, with passenger car units of 875 pcu/hour. Therefore, the total traffic value of the four-lane two-way road is 2,048 pcu/hour (see Table 7).

3.2.3. Side Friction Class

Side friction class on type 4/2 D roads at peak hour conditions, namely Monday, 22 February, 2022 at 17.00-18.00, is shown in Table 8. Therefore, it can be concluded that type 4/2 D is classified as moderate (M), with the number of incidents per 200 meters from 300 to 499 in special conditions, namely industrial areas and some roadside traders.

Civil Engineering and Architecture 11(2): 784-793, 2023

Line	Vehicle type	Light	vehicle	Heavy	vehicle	Moto	rcycle			
1,1	Pce direction 1	LV:	1,00	HV:	1.20	MC:	0.25	Total flow (Q)		(Q)
1.2	Pce direction 2	LV:	1.00	HV:	1.20	MC:	0.25			
2	Direction	Vehicle / hour	Direction %	Vehicle / hour	pcu/ hour					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
3	E-W (1)	371	371	35	42	1,846	462	40 %	2,252	875
4	W-E (2)	326	326	31	37	3,240	810	60 %	3,597	1,173
5	(1)+(2)	697	697	66	79	5,086	1272		5,849	2,048
6		D	irectional s	eparator, Sl	P = Q1/(Q1)	+Q2)			40 %	
7		Factor-p	cu (Fpcu)							0,35

Table 7. Form UR-2 MKJI 1997 for roads with a median of 4/2 D

Table 8. Determination of the frequency of occurrence of road type 4/2 D

Side friction type	Symbol	Influence factor	Frequency of occurrence/hour. 200m	Weighted frequency
Pedestrian	PED	0.5	120	60
Parking. vehicle stops	PSV	1.0	95	95
Vehicles in and out	EEV	0.7	202	141
Slow vehicle	SMV	0.4	33	13
		Total		310

Table 9. Total travel time and number of vehicles and space average speed 4/2 D from both directions

No	Type of	Σ way E-W (seconds)		-	Σ way W-E (seconds)		Number of E-W vehicles (/hour)				Number of W-E vehicles (/hour)		
	road	MC	LV	HV	MC	LV	HV	MC	LV	HV	MC	LV	HV
1	4/2 D Monday 17.00-18.00	650.23	662.73	101.09	838.63	680.55	62.64	133	123	19	178	112	11
No	Direction	Type of Road	Day/Hour			MC		Vs (km/h) LV		HV	Avera	Average vehicle speed (km/h)	
1	East West	4/2 D	Monday	17.00-18.00) 30	5.82	3	3.41		33.83		34.69	
2	West East	4/2 D	Monday	17.00-18.00) 3	8.21	2	9.62		31.61		33.15	

792

Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

3.2.4. Vehicle Space Average Speed

Table 9 shows the data recapitulation of the survey results for measuring the average speed of the vehicle space. The data consists of travel time and the number of vehicles from East (E) to West (W) and vice versa. The average vehicle speed (km/hour) was calculated using equation 5.

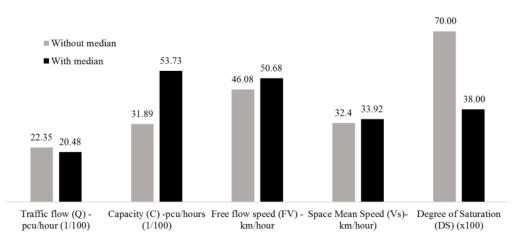
3.2.5. Free Flow Speed

The basic free flow speed (FV₀) is 57 km/hour, based on the provisions in the MKJI-1997 guidelines [10]. The lane width adjustment factor (FVw) is -2, hence FV₀ + FVw equals 55 km/hour. The adjustment factor for side resistance FFV_{SF} is 0.97, and the City size adjustment factor (FFV_{CS}) is 0.95. Free current speed (FV) is calculated by multiplying 55x0.97x0.95 to obtain 50.68 km/hour.

3.2.6. Road Segment Capacity

Based on the provisions in the MKJI-1997[10], get Basic Capacity (C0), the Adjustment factor for lane width (FCw), Directional separator (FCSP), Side resistance (FCSF), and City size (FCCS) arel 650 pcu/hour, 0.96, 0.97, 0.93, and 0.94. Therefore, using equation 3, the capacity is obtained by multiplying the values 1,650x0.96x0.97x0.93x0.94 to obtain 5,373 pcu/hour.

3.2.7. Degree of Saturation


The data analysis results show that the DS for the

research location road type 4/2 D is 0.38.

3.3. Median Effect on Section Road Performance

The analysis results of the research data are the section road performance parameters. Figure 3 compares the performance parameters without and with the median. The distribution of road traffic flow with the median causes the road without the median to have a higher traffic flow. The capacity of the road with the median is higher due to the road's larger geometric size and the path's division. Higher capacity and lower traffic flow on roads with median cause lower DS values. The opposite happens on roads without a median. Therefore, the quality of urban road services is linear with road users' satisfaction when using its infrastructure [21].

In Figure 3, the road with a median entry in LOS B is indicated by the value of DS at 0.38, which is between 0.20 and 0.44. This implies that the traffic flow is stable despite the limited speed. In LOS B, driver comfort is relatively high, with limited driver freedom to maneuver. The level of road service without a median is included in LOS C with a DS value of 0.70, which is between 0.45 and 0.74. The flow characteristics at LOS C are stable, but speed is affected by traffic and regulated by other drivers, thereby reducing driving comfort. The average space speed increased by 4.7% from 32.4 km/hour to 33.92 km/hour, as shown in Figure 3. This is in addition to a 45.7% increase by lowering the DS value from 0.70 to 0.38 or from LOS C to LOS B.

4. Conclusions

Based on the discussion of the data analysis results, using the median improves performance by 45.7% compared to no median. This indicates a decrease in the DS of traffic flow from 0.7 to 0.38 or from LOS C to B. Additionally, the average speed increased from 32.4 km/hour without a median to 33.92 km /hour with a median.

Acknowledgments

The authors are grateful to the Department of Civil Engineering, Faculty of Engineering, University of Mataram, for the financial support and facilities provided. The authors are also grateful to the students collecting and compiling survey data.

REFERENCES

- [1] O. F. Danilov, V. I. Kolesov, D. A. Sorokin, and M. L. Gulaev, "Study on the vehicle linear dynamic interval in a traffic flow," *Commun. Sci. Lett. Univ. Žilina*, vol. 23, no. 1, pp. E11–E22, 2021, doi:10.26552/COM.C.2021.1.E11-E22.
- [2] R. Mahajan and D. Mahajan, "To Study the Factors Causing Traffic Problems in India with Specific Reference to Pune City: A Conceptual Framework," *Civil Engineering and Architecture*, vol. 10, no. 3, pp. 1071–1080, 2022, DOI: 10.13189/cea.2022.100323.
- [3] M. Stoma, J. Caban, A. Dudziak, and A. Kuranc, "Selected aspects of the road traffic safety management system," *Commun. - Sci. Lett. Univ. Žilina*, vol. 23, no. 2, pp. F33– F42, 2021, doi: 10.26552/COM.C.2021.2.F33-F42.
- [4] M. Abuaddous, A. Al-Hares, A. M. Faten Albtoush, and J. A. Aldiabat Al-Btoosh, "Identification and Ranking of Accident Black Spots in Jordan," *Civil Engineering and Architecture*, vol. 10, no. 4, pp. 1661–1674, 2022, DOI: 10.13189/cea.2022.100435.
- [5] B. Al Hanif and N. P. Darsono, "The Effect of U-Turn on Traffic Flow Characteristics (A Case Study: Jendral Basuki Rachmat Road, East Jakarta)," *Int. J. Civ. Eng. Infrastruct.*, vol. 3, no. 2, pp. 369–372, 2012.
- [6] R. Meesit, K. Kanitpong, and P. Jiwattanakulpaisam, "Investigating the influence of highway median design on driver stress," *Transp. Res. Interdiscip. Perspect.*, vol. 4, p. 100098, 2020, DOI: 10.1016/j.trip.2020.100098.
- [7] M. L. Siregar, H. R. Agah, and F. A. Arifin, "Median-type adjustment factor for road capacity calculation," *Int. J. Technol.*, vol. 6, no. 5, pp. 762–769, 2015, doi: 10.14716/ijtech.v6i5.1358.
- [8] L. Cernicky, A. Kalasova, and J. Mikulski, "Simulation software as a calculation tool for traffic capacity

assessment," Commun. - Sci. Lett. Univ. Žilina, vol. 18, no. 2, pp. 99–103, 2016, doi: 10.26552/com.c.2016.2.99-103.

- [9] D. M. Priyantha Wedagama, I. Wayan Suweda, and N. L. G. Astariyani, "The Influence of Side Friction on Speed-Mixed Flow Behavior on Arterial Roads in Tourism Area in Bali," *Civil Engineering and Architecture*, vol. 10, no. 1, pp. 27–44, 2022, DOI: 10.13189/cea.2022.100103.
- [10] Direktorat Jendral Bina Marga, Indonesian Road Capacity Manual/ Manual Kapasitas Jalan Indonesia (MKJI) (in Indonesian). Jakarta: Departemen Pekerjaan Umum, 1997.
- [11] Badan Pusat Statistik Kabupaten Lombok Barat, "West Lombok Regency Data/Kabupaten Lombok Barat Dalam Angka 2021 (in Indonesian)," *Publikasi BPS Lombok Barat*, 2021. https://lombokbaratkab.bps.go.id/publication/2021/02/26/2

e5841a8179bddda5b3621bb/kabupaten-lombok-barat-dala m-angka-2021.html.

- [12] Direktorat Jenderal Bina Marga, Separation Planning Procedure/ Tata Cara Perencanaan Pemisah, No.014/T/BNTK/1990 (in Indonesian). Jakarta: Departemen Pekerjaan Umum, 1990.
- [13] R. P. Singh, H. Tekwani, B. Joshi, P. Sudhakaran, and J. Singh, "Study of Traffic Volume and its Safety Measurement at Dadabari Circle, Career Point University, Kota," *Int. J. Curr. Eng. Technol.*, vol. 8, no. 01, pp. 1–4, 2018, doi: 10.14741/ijcet.v8i01.10892.
- [14] Edward K.Morlok, Pengantar Teknik Dan Perencanaan Transportasi (in Indonesian). Erlangga, 1995.
- [15] S. Salini, S. George, and R. Ashalatha, "Effect of Side Frictions on Traffic Characteristics of Urban Arterials," *Transp. Res. Proceedia*, vol. 17, no. December 2014, pp. 636–643, 2016, DOI: 10.1016/j.trpro.2016.11.118.
- [16] L. V. Leong, T. A. Azai, W. C. Goh, and M. B. Mahdi, "The development and assessment of free-flow speed models under heterogeneous traffic in facilitating sustainable inter urban multilane highways," *Sustain.*, vol. 12, no. 8, 2020, DOI: 10.3390/SU12083445.
- [17] Z. Li and R. Laurence, "An analysis of four methodologies for estimating highway capacity from ITS data," *J. Mod. Transp.*, vol. 23, no. 2, pp. 107–118, 2015, doi: 10.1007/s40534-015-0074-2.
- [18] D. I. Pratama and S. Anwar, "Traffic Planning in Kuningan City Center," J. Green Sci. Technol., vol. II, no. 1, pp. 23– 28, 2017.
- [19] N. B. Taylor, "Space-mean speed from time-mean speed using NGSIM data Space-mean speed from time-mean speed using NGSIM data," no. August, 2021, DOI: 10.13140/RG.2.2.34603.57125.
- [20] D. H. Chengula, "Study on the Effects of Pavement Condition on Level of Service of the Road Segments," vol. 4531, pp. 118–137.
- [21] P. K. Bhuyan and M. S. Nayak, "A Review on Level of Service Analysis of Urban Streets," *Transp. Rev.*, vol. 33, no. 2, pp. 219–238, 2013, DOI: 10.1080/01441647.2013.779617.

Effect of Median Application on Section Road Performance Based on Degree of Saturation and Speed at Road of Small Town in Lombok, Indonesia

ORIGINALITY REPORT			
0% SIMILARITY INDEX	0% INTERNET SOURCES	0% PUBLICATIONS	0% STUDENT PAPERS
PRIMARY SOURCES			

Exclude quotes	On	Exclude matches	< 3%
Exclude bibliography	On		