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Abstract This paper presents the intensely studied route to
chaotic oscillation in power systems. By using a three-bus
simple power system, a route was found to cause chaotic
behavior in the power systems which are evaluated,
illustrated, and discussed in this study. Furthermore, chaotic
behavior by using recurrent neural networks (RNN) and exact
models are compared. In particular, we have proposed that
RNN can be trained by using it on both the present input and
past output, using back-propagation algorithm with adaptive
learning rate and momentum. Performance of learning rate
with momentum is better than learning rate without
momentum. The appearance of chaotic behavior in a power
system is already proven and can be modeled by using the
RNN. A chaotic behavior is detected by a strange attractor (a
chaotic attractor) in the phase-plane. The largest mean
squared error (MSE) was observed to be 7.8296% obtained
on the rotor speed @ at a disturbance of 1.7003 rad/sec. On
the contrary, the least MSE was 0.0407% obtained on load
voltage at disturbance 1.600 rad/sec.

Key words: Power systems, chaotic behavior, recurrent
neural networks (RNN), chaotic attractor, phase-plane.

1. INTRODUCTION

Chaotic phenomena are the form of undeterministic
oscillations that exist in the deterministic systems. Electric
power system is a nonlinear system with many apparatus
having inheritance nonlinearity. Chiang et al. built the voltage
collapse model and presented both the physical explanations
and computational considerations of this model. Static and
dynamic models are used to explicate the type of voltage
collapse, where the static is used before a saddle—node
bifurcation and the dynamic model is employed after the
bifurcation [1]. The Lyapunov exponent, measuring how
rapidly the two nearby trajectories separate from one another
within the state space and broadband spectrum, is used to
confirm the observation [2]. Within the range of loading
conditions, the sensitive-dependence feature of chaotic
behavior makes the power system unpredictable after a finite
time. Also, within the range, the effectiveness of any control
scheme is in doubt should be re-evaluated based on the state
vector information. Furthermore, nonlinear phenomena,
including bifurcations and chaos, occur in the power systems
model exhibiting voltage collapse. The presence of various
nonlinear phenomena is found to be a crucial factor in the
inception of voltage collapse in this model. Moreover, the
problem of controlling in the presence of these linear
phenomena is addressed. The bifurcation-control approach
modifies the bifurcations and suppresses chaos [3][4]. The
relationships between chaos and power system instability
were studied by Yu et al. [5]. The existence of chaos in power
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systems owing to the disturbance energy at rotor speed has
been studied previously [6]. A scheme of chaos utility is used
in the electrical systems for smelting base on chaos control.
Zhao-Ming et al. demonstrated that the chaotic steel-smelting
oven regulated its heating current according to the chaos
control theory [7]. Control system using a neural-network
controller is presumed to stabilize the unstable focus points of
two-dimensional chaotic systems. However, Konishi and
Kokame stated that the control system does not require such
knowledge [8]. Various studies were carmried out to control
transient chaos, such as the one by Damala and Ying-Cheng,
who attempted to control transient chaos in power systems
using data-time series [9]. Furthermore, Strategies of
controlling chaos in the process plants were tested on a
discrete chaotic system of Henon map [10].

In this study, we focused on the cause of chaotic oscillation in
power systems and its model, by using recurrent neural
network (RNN) models. The main reason for using RNN is
that it can be trained by using it on both the present input and
past output, and also because of its simple form
(an Elman RNN).

In Section II, the power system models used in this
research are presented, followed by the description of RNN
model used in this study Section 11I. The chaotic sensitivity to
initial condition and analysis of the chaotic behavior are
presented in Sections IV and V, respectively, followed by the
conclusions in the last section.

1. POWER SYSTEMS MODEL

Synchronous machine is modeled by voltage £’ behind
direct reactance X" Its magnitude is assumed to remain
constant at the pre-disturbance value, as shown in Fig. 1(a).
De Mello and Concordia as well as Padiyar and Kundur
derived this model connected to infinite bus [11][12].
However, saturation and stator resistance are neglected, and
the system condition is balanced with static load. The block-
diagram for the mechanism of single machine connected to
infinite bus is shown in Fig. 1(b).

The machine is connected to infinite bus and the
supplying load. Armature current flows from the machine to
the load. This current causes electric torque on the stator
winding, and vice versa. The mechanical torque is produced
by flux on the rotor winding. When the rotor speed is
constant, it will follow the synchronous speed. When there is
an imbalanced energy, the rotor speed may be accelerated or
decelerated and causing the swing equation. Swing equation
is represented as follows:

2
H Q+D w=1,=
ar?

T,

m

-T. (1
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where D and @ are damping constant and rotor speed,
respectively. Equation (1) is a basic equation for mode
mechanic machine, which can be modified furthermore to
Eq. (2) and Eq. (3).

AS = wy Ao (2)

.1
Amzﬁ[ATm—A?;—D Aw) (3)
where AT, AT,, A5, Aw, D, and M are mechanical torque,
clectrical torque, power angle, rotor speed, damping constant,
and inertia constant, respectively.

The system was developed from the work of Chiang et al. and
Yu et al. [2][5] (Fig.2) and is regarded as a synchronous
machine supplying power to a local dynamic load-shunt with
a capacitor (Bus 2) connected by a weak tie-line to the
extemnal system (Bus 3). The system equations are:

S=w (4)
@=16.667sin (5, — 5 +0.087)V, (5)
~3333.d.w+1.881
5, =496.872V,°
~166.667cos(8, —5—0.087)V,
-933330, (6)

—666.667 cos(d;, — 0.209)V;
-33.333Q,,, +43.333

=-78.764V,*
+26.217cos(8;, -5 -0.012)V;
+14.523V, +104.869 cos(s, —0.135)
-5.2290,, —7.033

8, @ d O & .V, are power angle, rotor speed, damping
constant, reactive load, voltage angle, and voltage magnitude
at load bus, respectively. Equations (4)-(7) can be simplified
into a uniform equation, as shown in Eq. (8).

i=f(x,4), xeR" AcR? (8)
where x denotes the vector-state variables and A signifies the
vector of parameters. The state variables are

x=[8 @ &,.V, ], where superscript T denotes the transpose
of the associate vector.

Vi

Figure 1. Synchronous machine connected to infinite bus.
(a) Circuit equivalent. (b) Block diagram-mode mechanics.
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Figure 2. One-line diagram of power system with three buses.

TABLE I. THE SYSTEM PARAMETERS |5].

Y, Y, Y, 4 3 E,
4975 1.658 0.01 —-1.471 —1.471 —1.4 1.0
E, Xy X, X' X, Tw' Tw'
1.0 1.79 1.71 0.169 023 4.3 .85
H @y d Py ) Pr q B,
2.89 377 0.05 0.4 0ng 0.24 —0.02 0.2
P q: Ps qs O | P Ky T
1.7 —1.866 0.2 1.6 0 0 200 0.05

I1I. RECURRENT NEURAL NETWORKS

Recurrent Elman network commonly is a two-layer
network with feedback from the first-layer output to the first-
layer input. This recurrent connection allows the Elman
network to both detect and generate the time-varying pattemns.
A two-layer Elman network is shown in Fig. 3. The Elman
network has tangent sigmoid (tansig) neurons in its hidden
(recurrent) layer and pure linear (purelin) in its output layer.
The Elman network differs from the conventional two-layer
networks in that the first layer has a recurrent connection. The
delay in this connection stores the values from the previous
time-step, which can be used in the current time-step. Thus,
even if two Elman networks with the same weight and bias
are given identical inputs at a given time-step, their outputs
can be different owing to the different feedback states. As the
network can store the information for future reference, it can
understand the temporal pattern as well as spatial patterns
[15][16][17][18]. The Elman networks can be trained to

respond and generate both kinds of pattems.
a'{n):tan.s-:'g[mf,_,p+Lw,_,a'{n—|)+ b,) ©
a*(n)= pm'e’a’:'n[LHr’z_lal{n)+ bz) :
In this study, the architecture 4:8:8:4 RNN was used, where p,
d'(n), a’(n), IW,,, LW,,, LW,,, b, and b, are vector
input, recurrent-layer output, purelin-layer output, weight
first-layer, weight hidden layer back to first-layer, weight
hidden layer to output layer, and biases, respectively. The
RNNs were developed with 1000 data points. Tansig and
purelin activation function were used at hidden and output
layer, respectively. Data time series were obtained from
mathematical (exact) model of Eq. (4)-Eq. (7), respectively.
The network performance was measured by mean square
error (MSE). Mathematically, MSE can be expressed in the

form of an equation as follows.
B
MSE:%[Z{}H —_r,,)z} (10)
i=1

where k, Xx,, and ﬁ” are the size of data, input, and

estimation of nth data.
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IV. CHAOTIC SENSITIVITY TO INITIAL
CONDITIONS

The chaos definition and its properties have been given
by Devaney and Alligood et al. [13][14]. Sensitivity of the
initial condition is one type of chaos properties. It is described
by the existing route to chaotic behavior in the power systems
caused by sensitivity of initial-condition rotor speed (a@y).
Rotor speed (@) in the power systems is presented by
disturbing energies (DE). Kinetic energy disturbance is
exclusively related to the rotor speed. If DE is larger, then it
will result in larger rotor speed. When DE<1.3824 rad/sec
(0,<1.3824 rad/sec), the power system can converge to a
stable equilibrium point. If DE increases, the convergence
becomes more difficult. At ey = 1.3825 rad/sec, the power
systems will route to a chaotic behavior in a longer duration.
At a range of 1.3825-17003 rad/sec, the final states are
controlled by a chaotic behavior. Furthermore, if the rotor is
=1.7004 rad/sec, then the system will undergo monotonic
divergence or collapse. It has been proven that chaotic
behavior in the power systems caused by injecting energy
results in unexpected disturbances.

a )
-
0 7L 52 xl
521

2

1
B 1 gy 1 S'xl <
Output purelin layer

s
Input Recurrent tansig layer

Figure 3. Block diagram of RNN [18].

TABLE IL. SYSTEM CONDITIONS WITH DIFFERENT INITIAL
ROTOR SPEEDS (ay) [6].

an(rad/sec) Time (sec) Final state Time response
0.5 1000 Equilibrium point Fig. 4(a)
1.3824 1000 Equilibrium point Fig. 4(b)
1.3825 1000 Chaotic Fig. 5(a)
1.7003 1000 Chaotic Fig. 5(h)
1.7004 10 Divergence —
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Figure 4. Simulation results with equilibrium point state.
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Figure 6. (a) Magnification of Fig. 5 between 0 and 250 sec.
(b) Magnification of Fig. 5 between 0 and 50 sec.

V. RESULTS AND ANALYSIS

The RNN initial simulation parameters were obtained as
follows: 0.17 for learning rate train parameter, 1.2 for
increment leaming rate, 0.6, and 0.75 for decrement learning
rate and momentum learning rate, respectively. The training
performance of RNN using adaptive leaming rate with
momentum is shown in Table I11.

The training process was organized as follows: the RNN
performances (MSE) were obtained as 14.7001x10 + and
4.2209x10* at a disturbance of @, = 0.5 rad/sec for algorithm
back-propagation adaptive leaming rate (traingda) and back-
propagation learning rate algorithm with momentum
(traingdx), respectively. Subsequently, at the disturbance of
oy 1.3825 and 1.7003 rad/sec, the performances (MSE) for
algorithm back-propagation adaptive learning rate (traingda)
and algorithm back-propagation adaptive learning rate with
momentum (traingdx) were 16.8361x10 * and 4.6115x107",
and  17.4185x10™ and  4.9442x10™*,  respectively.
Furthermore, during the training process the best performance
(MSE) was obtained as 4.2209x10 * at the disturbance
of wy= 0.5 rad/sec.
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Figure 7. Rotor speed { @) time response at chaotic state at
an = 1.7003 rad/sec. (a) Blue = exact; red = RNN. (b) Error signal.
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Figure 8. Voltage angle (&) time response at chaotic state at
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Figure 9. Voltage magnitude (F;) time response at ay = 1.7003 rad/sec.
(a) Blue = exact; red = RNN. (b) Error signal V.
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TABLE IIl. PERFORMANCES TRAINING ALGORITHM
USING LEARNING RATE WITH MOMENTUM.

@y Training Time Performances

(rad/sec) (secx10%) MSE (x107")
traingda traingdx Traingda traingdx

0.5 #9.3861 37.403 14.7001 4.2209

1.3824 68.3250 42.342 17.2014 4.9080

1.3825 67.3329 36.750 16.8361 4.6115

1.7003 70.5781 41.840 17.4185 4.9442

Figures 7-9 illustrate the result of time response by exact
and RNN models. Figure 7(a) shows the rotor speed () time
response which is oscillated by the disturbance occurring at
ay = 1.7003 rad/sec. Rotor speed oscillations for exact and
RNN exist in range from —1.6052 to 1.5679 rad/sec and
—1.5411 to 1.6045 rad/sec, respectively. The difference in
both these signals, known as rotor speed emror signal, is
shown in Fig. 7(b), where at this moment, the rotor speed
exhibits chaotic behavior.

The voltage angle (&;) at Bus 2 is affected by disturbing
rotor speed at the generator bus (@, = 0.5 rad/sec). The
oscillation on the voltage angle occurs at the generator bus in
735 sec. Furthermore, this oscillation decreased gradually and
route to equilibrium state (fixed point) at the point of 0.1128
rad and 0.1116 rad for exact and RNN model, respectively.
The error signal is measured by MSE (MSE = 3.8193%).
This result is shown in Table I'V.

Oscillation voltage angle was observed to increase at the
disturbance 1.3824, 1.3825, 1.600 and, 1.7003 rad/sec for the
exact model with amplitude in the ranges from 0.0600 to
0.1995 rad, 0.0351 to 0.2730 rad. 0.0345 to 0.2748 rad and
0.0340 to 0.2756 rad, respectively: while the oscillation for
the RNN model are in the ranges from 0.0501 to 0.1879 rad,
0.0460 to 0.2644 rad, 0.0332 to 0.2618 rad, and 0.0342 to
0.2613 rad, respectively. This oscillation occurred for a
longer duration. The voltage angle time-response occurring at
disturbance @, = 1.7003 rad/sec is shown in Fig. 8.

At disturbance ay = 0.5 rad/sec, the voltage magnitude
was oscillated in 410 sec. Furthermore, it decreased gradually
route to equilibrium state (fixed point) at point 1.095 and
1.008 pu for exact and RNN model, respectively. By
increasing the disturbance at @y, = 1.3824 rad/sec, the voltage
magnitude was oscillated for a longer duration in the range
from 0.9967 to 1.1207 pu for exact model, and subsequently,
the amplitude was reduced and fixed point at 1.1095 pu
(1520 sec).

On the contrary, when the disturbance was increased up
to 1.3825, 1.600, and 1.7003 rad/sec, the voltage magnitude
oscillated for the exact model with increasing amplitude in
the ranges from 0.8307 to 1.1220 pu, 0.8285 to 1.1118 pu, and
0.8290 to 1.1119 pu, respectively; whereas, the oscillation for
the RNN model were in the ranges from 0.8497 to 1.1158 pu,
0.8580 to 1.1235 pu,and 0.8642 to 1.1185 pu, respectively.

State trajectory (orbit) of the @vs. & is shown in Fig. 10,
where the circles are made by themselves with boundary
ranges from —1.6011 to +1.5535 rad/sec, and —0.1165 to
+0.7583 rad for oy, to @, and 3., to 8., respectively.
State trajectory for the RNN model was made in the ranges
—1.6020 to +1.5524 rad/sec and —0.1645 to +0.7598 rad. This
form is known as the strange attractor (chaotic attractor).
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The strange attractors are made by & vs. V. state
trajectories, as shown in Fig. 11 at coordinates in the ranges
from 0.0345 to 0.2748 rad and 0.8285 to 1.1118 pu for 8y to
OLmin aNd Vi 10 Vimin, respectively; subsequently, the RNN
model in the ranges from 0.0332 to 0.2618 rad and 0.8280 to
1.1235 pu for 8¢ max t0 8t min aNd V Lmax t0 Vi, respectively.

Furthermore, existence of the chaotic attractors is also
depicted in Figs. 12 and 13 for @, = 1.7003 rad/sec. Figure 12
illustrates @ vs. & state trajectories at coordinates from
—1.6052 to +1.5679 rad/sec and —0.1157 to +0.7601 rad for
O ppip 10 ©,, and by, 10 8y, respectively. The results from the
RNN model are depicted by the red circles at coordinates from
—1.5410 to +1.6045 rad/sec and —0.1345 to +0.7457 rad for
O pmin 10 @, and Sy, to By, respectively.

TABLE IV. SYSTEM STATE WHEN VARIATION OF
DISTURBANCE (&) 1S APPLIED.

@yand S(rad) afradiec) & (rad/sec) 2(pu)
Maodel
0.5 Eq 0.3095 Osc—0.2104 Eq0.1128 Eq 1.095
exact to 0.2123
RNN Eq0.3194 Osc—0.2048 Eq0.1116 Eq 1.008
to 0.2090
MSE
(%) 0.2636 6.1792 3.8193 6.9051
1.3824 Osc—0.0245 Osc—1.1546 Osc0.0600 Osc.9967
exact to 0.6160 to 1.1049 to 0.1995 to 1.1207
RNN Osc—0.0256 Osc—1.0246 Osc0.0501 Osc).9970
to 0.6165 to 1.0049 to 0.1879 to 1.1135
MSE
(%) 3.9625 6.3023 0.2040 0.1154
1.3425 Osc—0.1156 Ose—1.5711 Osc0.035] Oscl).8307
Exact to 0.7578 to 1.5142 to 0.2730 to 1.1220
RNN Osc—0.1148 Osc—1.5734 Osc0.0460 Oscl).8497
to 0.7510 to 1.5165 to 0.2644 to 1.1158
MSE
(") 0.68 0.23 1.09 1.90
L6000 Osc—0.1165 Ose—1.6011 Osc 0. 0345 | Osc 0.8285
Exact to 0.7583 to 1.5535 to (. 2748 tol. 1118
RNN Osc—.1645 Ose—1.6020 Osc 00332 | Osc 0.8580
to 0.7598 to 1.5524 to 0. 2618 to 1. 1235
MSE
(%) 0.2163 28779 0.0460 0.0407
1.7003 Osc—0.1157 Osc—1.6052 Osc 0. 0340 | Osc 0.8290
Exact to 0.7601 to 1.5679 to 0. 2756 tol. 1119
RNN Osc—0.1345 Osc—1.5410 Osc 00342 | Osc 0.8642
to 0.7457 to 1.6045 to 0.2613 to 1. 1185
MSE
(%) 1.0522 7.8296 0.1284 0.1470

Note: Eq = equilibrium pont (fixed point); Osc = oscillation.
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Figure 13. &—F; State trajectory when applied disturbance
at an = 1.7003 rad/sec.

Figure 13 illustrates & vs. V. state trajectories at
coordinates 0.0340 to 0.2756 rad and 0.8290 to 1.1119 pu for
OLmax 0 OLmin and Vime t0 Vimn, respectively. The state
trajectories RNN model is depicted by the red points at
coordinates 0.0342—0.2613 rad and 0.8642—1.1185 pu for 8 ..
10 Opmin and Vimax t0 Vimin, respectively. The complete results
are tabulated in Table IV.

The RNN performance can be measured by difference
signal output from exact and RNN models. From Table IV we
can observe that the largest MSE is 7.8296% obtained on
speed rotor © at disturbance 1.7003 rad/sec. On the contrary,
the least MSE is 0.0407% obtained on the load angle at
disturbance 1.600 rad/sec. Thus, it is proven that chaotic
behavior in power systems can be modeled by RNN.

V1. CONCLUSIONS

In this paper, extensive investigation was carried out on
the chaotic oscillation by exact and RNN model. The training
by using adaptive learning rate, both with and without
momentum was compared, and the adaptive leaming rate
performance with momentum was found to be better. Chaotic
behaviors were detected in the power systems by the chaotic
attractors both at the power angle-rotor speed and magnitude-
angle voltage state-trajectories in the phase-plane. The largest
MSE is 7.8296% obtained on the rotor speed @ at disturbance
1.7003 rad/sec. On the contrary, the least MSE was 0.0407%
obtained on the load voltage at disturbance 1.600 rad/sec.

FUTURE WORK

Recently, chaotic behavior in power systems has been the
topic of interest in research. The chaotic behavior can be
reduced from power systems by properly applying the control
strategy.
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