


ISBN : 978-979-98352-5-3 
 

 
 
 

Proceedings of the International Conference on 
Advanced Computational Intelligence and Its Application 

(ICACIA-2008) 
University of Indonesia 

September 1st – 2nd, 2008 
 
 
 
 

Editors: 
Prof. Dr. Benyamin Kusumoputro 

    Prof. Dr. Tribudi W. Rahardjo  
Prof. Dr. Aniati Murni 
Dr. Wisnu Jatmiko 

 
 

 
 

Organized by 
 
 
 
 
 

 
 

Directorate Research and Community Service 
University of Indonesia 

 

 
 

Indonesian Society on Computer and 
Information Sciences 

 



vii

Program at a Glance 
(Place/Venue = Centre of Japanese Study, Kampus UI – Depok) 

Date Time Program Room 
Monday, 
September 
1st, 2008 

08.00 – 08.45 

08.45 – 09.30 

09.30 – 10.15 

10.15 – 10.45 

10.45 – 1130 

11.30 – 13.00 

13.00 – 13.30 

13.30 – 15.00 

15.00 – 15.30 

15.30 – 16.00 

16.00 – 17.30 

18.00 – 19.00 

Registration 

Opening Symposium 
- Chairman of Organizing Committee 
- Rector University of Indonesia  
- Minister of Communication and 

Information Technology of The  
Republic of Indonesia (Opening) 

Plenary Lecture : “Prof. Toshio Fukuda” 

Break

Plenary Lecture : “Prof. Z. Bien” 

Break

Invited Speech 
 “Prof. H. Murase and Lina (Ph.D candidate)” 

Parallel Session 
- Bio Imaging and Bio Informatics I  
- Robotic and Automation I 
- Application I 

Break

Invited Speech : “ Asst. Prof. M. Nakajima” 

Parallel Session 
- Bio Imaging and Bio Informatics II  
- Robotic and Automation II 
- Application II 

Dinner 

Hall

Auditorium 

Auditorium 

Hall

Auditorium 

Hall

Auditorium 

Auditorium 
Class A 
Class B 

Hall

Auditorium 

Auditorium 
Class A 
Class B 

Hall
Tuesday, 
September 
2nd, 2008 

08.00 – 09.00 

09.00 – 09.45 

09.45 – 10.30 

10.30 – 11.00 

11.30 – 12.30 

12.30 – 13.00 

Registration 

Plenary Lecture : “Prof. Xudong Bao” 

Plenary Lecture  : “S. Bandelow, Ph.D” 

Break

Parallel Session 
- Bio Imaging and Bio Informatics III  
- Robotic and Automation III 
- Application III  

Closing Ceremony : “Director of of Directorate of 
Research and Community Services” 

Hall

Auditorium 

Auditorium 

Hall

Auditorium 
Class A 
Class B 

Auditorium  

Auditorium is the main hall. Class A and B, is the parallel class with capacity of 40 people.  

Three type of presentations: 
1. Plenary Lecture Presentation 
2. Invited Speech Presentation 
3. Regular Speech Presentation 



viii

Table of Contents 

Welcome Remarks ...................................................................................................................... i 

Symposium Organization......................................................................................................... iv

Program at a Glance................................................................................................................ vii 

Table of Contents .................................................................................................................... viii 

Keynote and Plenary Lectures

Toward Challenging Computational Intelligence Application For Solving Our Nation 
Problem...................................................................................................................................1

Prof. Mohammad NUH,
Minister for Communication and Information Technology Republic of Indonesia 

Biomimetic Multi-locomotion Robot .....................................................................................3 
Prof. Toshio Fukuda, Nagoya University, Japan

FACE:  its Detection, Tracking and Emotional Expression Recognition with 
Computational Intelligence Techniques .................................................................................9 

Prof. Z. Zenn Bien, KAIST,Korea

Adaptive Gaussian Filter for Reduction of Noise in Diffusion Tensor MRI .......................10 
Prof. Xudong Bao, Southeast University, Nanjing, Jiangsu Province, China 

The Development of Computational Tools for Dementia Diagnosis ...................................15 
Stephan Bandelow, Ph.D, University of Loughborough, Great Britain

Invited Lectures

Video Based Face Recognition Using Face Manifold with View-Dependent 
Covariance Matrix ................................................................................................................21

Lina, Nagoya University, Japan, T. Takahashi, I. Ide, and H. Murase

Observation and Nanorobotic Assembly inside Electron Microscopes................................27 
M. Nakajima, P. Liu, M. R. Ahmad and T. Fukuda, Nagoya University, Japan



ix

Bio Imaging and Bio Informatics I 

Diagnosing Pap Smear Cell Image Based on Association Rules .........................................33 
E. Purnama Giri, Bogor Agricultural University, Indonesia, and A. Murni

Quantification Method for In Vitro Tissue Culture Plants Morphology using Object 
Tracking and Digital Image Analysis ...................................................................................39 

K. Rega P., University of Surabaya, Indonesia, A. Buono,  Sutoro and I. Hermadi 

Higher Order Spectrum Analysis and Neural Networks Classifier for Speaker 
Identification in Noisy Environment ....................................................................................45 

A. Buono, B. Kusumoputro and I. Fanany, , University of  Indonesia, Indonesia 

Bio Imaging and Bio Informatics II 

Modeling of Chaotic Behavior in Power Systems using Recurrent Neural 
Networks ..............................................................................................................................51

I Made G., Mataram University, Indonesia, A. Soeprijanto and M. H. Purnomo 

Color and Texture Fusion For Multispectral Image Segmentation ......................................57 
S. H. Wijaya, Bogor Agricultural University, Indonesia, and  A. Murni

3D Face Pose Determination using Spline Interpolation and Linear Interpolation ..............63 
H. Rolis S, W. Jatmiko and B. Kusumoputro, University of Indonesia, Indonesia 

Visualization and Statistical Analysis Fuzzy-Neuro LVQ in Eigen Domain for 
Recognizing Mixture Odor ...................................................................................................70 

Rocmatullah, B. Kusumoputro and W. Jatmiko, University of Indonesia, Indonesia 

Bio Imaging and Bio Informatics III 

Development of 2D Mel-Frequency Cepstrum Coefficient Method for Processing 
Bispectrum Data as Feature Extraction Technique in Speaker Identification System .........76 

A. Buono, Bogor Agriculture Univ., Indonesia, W. Jatmiko,  and B. Kusumoputro 

Genetics Algorithm for 2D-MFCC Filter Development in Speaker Identification 
System Using HMM .............................................................................................................82

A. Buono, Bogor Agriculture Univ., Indonesia, W. Jatmiko,  and B. Kusumoputro 

Utilization of Preferred Facial Profile Cephalometric Parameters To Increase 
Orthodontic Patient Satisfaction(A Computer Model Study on Indonesian 
Deuteromalay Race)..............................................................................................................89

J. Kusnoto, Trisakti University, Jakarta, Indonesia T.B.W. Rahardjo, H. Halim



MODELLING OF CHAOTIC BEHAVIOR IN POWER SYSTEMS 
USING RECURRENT  NEURAL NETWORKS 

I Made Ginarsa              Adi Soeprijanto, Mauridhi Hery Purnomo 
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                 Institute Technology Sepuluh Nopember 
Mataram, Indonesia             Surabaya, Indonesia 
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Abstract This paper presents the intensely studied route to 
chaotic oscillation in power systems.     By using a three-bus 
simple power system, a route was found to cause chaotic 
behavior in the power systems which are evaluated, 
illustrated, and discussed in this study. Furthermore, chaotic 
behavior by using recurrent neural networks (RNN) and exact 
models are compared. In particular, we have proposed that 
RNN can be trained by using it on both the present input  and 
past output, using back-propagation algorithm with adaptive 
learning rate and momentum. Performance of learning rate 
with momentum is better than learning rate without 
momentum. The appearance of chaotic behavior in a power 
system is already proven and can be modeled by using the 
RNN.  A chaotic behavior is detected by a strange attractor (a 
chaotic attractor) in the phase-plane. The largest mean 
squared error (MSE) was observed to be 7.8296% obtained 
on the rotor speed  at a disturbance of 1.7003 rad/sec. On 
the contrary, the least MSE was 0.0407% obtained on load 
voltage  at disturbance 1.600 rad/sec.

Key words:  Power systems, chaotic behavior, recurrent 
neural networks (RNN), chaotic attractor, phase-plane. 

I.  INTRODUCTION 
Chaotic phenomena are the form of undeterministic 

oscillations that exist in the deterministic systems. Electric 
power system is a nonlinear system with many apparatus 
having inheritance nonlinearity. Chiang et al. built the voltage 
collapse model and presented both the physical explanations 
and computational considerations of this model. Static and 
dynamic models are used to explicate the type of voltage 
collapse, where the static is used before a saddle node 
bifurcation and the dynamic model is employed after the 
bifurcation [1]. The Lyapunov exponent, measuring how 
rapidly the two nearby trajectories separate from one another 
within the state space and broadband spectrum, is used to 
confirm the observation [2]. Within the range of loading 
conditions, the sensitive-dependence feature of chaotic 
behavior makes the power system unpredictable after a finite 
time. Also, within the range, the effectiveness of any control 
scheme is in doubt should be re-evaluated based on the state 
vector information. Furthermore, nonlinear phenomena, 
including bifurcations and chaos, occur in the power systems 
model exhibiting voltage collapse. The presence of various 
nonlinear phenomena is found to be a crucial factor in the 
inception of voltage collapse in this model. Moreover, the 
problem of controlling in the presence of these linear 
phenomena is addressed. The bifurcation-control approach 
modifies the bifurcations and suppresses chaos [3][4].  The 
relationships between chaos and power system instability 
were studied by Yu et al. [5]. The existence of chaos in power 

systems owing to the disturbance energy at rotor speed has 
been studied previously [6]. A scheme of chaos utility is used 
in the electrical systems for smelting base on chaos control.  
Zhao-Ming et al. demonstrated that the chaotic steel-smelting 
oven regulated its heating current according to the chaos 
control theory [7]. Control system using a neural-network 
controller is presumed to stabilize the unstable focus points of 
two-dimensional chaotic systems. However, Konishi and 
Kokame stated that the control system does not require such 
knowledge [8]. Various studies were carried out to control 
transient chaos, such as the one by Damala and Ying-Cheng, 
who attempted to control transient chaos in power systems 
using data-time series [9]. Furthermore, Strategies of 
controlling chaos in the process plants were tested on a 
discrete chaotic system of Henon map [10].  
In this study, we focused on the cause of chaotic oscillation in 
power systems and its model, by using recurrent neural 
network (RNN) models. The main reason for using RNN is 
that it can be trained by using it on both the present input and 
past output, and also because of its simple form               
(an Elman RNN).    

In Section II, the power system models used in this 
research are presented, followed by the description of RNN 
model used in this study Section III. The chaotic sensitivity to 
initial condition and analysis of the chaotic behavior are 
presented in Sections IV and V, respectively, followed by the 
conclusions in the last section. 

II. POWER SYSTEMS MODEL 

Synchronous machine is modeled by voltage E' behind 
direct reactance Xd'. Its magnitude is assumed to remain 
constant at the pre-disturbance value, as shown in Fig. 1(a). 
De Mello and Concordia as well as Padiyar and Kundur 
derived this model connected to infinite bus [11][12]. 
However, saturation and stator resistance are neglected, and 
the system condition is balanced with static load. The block- 
diagram for the mechanism of single machine connected to 
infinite bus is shown in Fig. 1(b). 

The machine is connected to infinite bus and the 
supplying load. Armature current flows from the machine to 
the load. This current causes electric torque on the stator 
winding, and vice versa. The mechanical torque is produced 
by flux on the rotor winding. When the rotor speed is 
constant, it will follow the synchronous speed. When there is 
an imbalanced energy, the rotor speed may be accelerated or 
decelerated and causing the swing equation. Swing equation 
is represented as follows: 

            ema TTTD
t

H 2

2
                                  (1) 
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where D and  are damping constant and rotor speed, 
respectively.  Equation (1) is a basic equation for mode 
mechanic machine, which can be modified furthermore to   
Eq. (2) and Eq. (3). 
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                             (3) 

where Tm, Te, , , D, and M are mechanical torque, 
electrical torque, power angle, rotor speed, damping constant, 
and inertia constant, respectively.

The system was developed from the work of Chiang et al. and 
Yu et al. [2][5] (Fig.2) and is regarded as a synchronous 
machine supplying power to a local dynamic load-shunt with 
a capacitor (Bus 2) connected by a weak tie-line to the 
external system (Bus 3). The system equations are: 

                        (4) 
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, , d, Qld, L ,VL are power angle, rotor speed, damping 
constant, reactive load, voltage angle, and  voltage magnitude 
at load bus, respectively. Equations (4)-(7) can be simplified 
into a uniform equation, as shown in Eq. (8). 
                                     (8) pn RRxxfx ,,,
where x denotes the vector-state variables and signifies the 
vector of parameters. The state variables are               
x = [ , ,

           
L ,VL ]T, where superscript T denotes the transpose 

of the associate vector. 

Figure 1. Synchronous machine connected to infinite bus. 
(a) Circuit equivalent.  (b) Block diagram-mode mechanics. 

Figure 2. One-line diagram of power system with three buses. 

TABLE I. THE SYSTEM PARAMETERS [5]. 

Y1 Y2 Y3 1 1 1 Eb

4.975 1.658 0.01 1.471 1.471 1.4 1.0 
Em Xd Xq Xd' Xq' Td0' Tq0'
1.0 1.79 1.71 0.169 0.23 4.3 0.85 

H B d P0 Q0 p1 q1 Bc

2.89 377 0.05 0.4 0.8 0.24 0.02 0.2 
p2 q2 p3 q3 Q1d P1d KA TA

1.7 1.866 0.2 1.6 0 0 200 0.05 

III.  RECURRENT NEURAL NETWORKS 
Recurrent Elman network commonly is a two-layer 

network with feedback from the first-layer output to the first-
layer input. This recurrent connection allows the Elman 
network to both detect and generate the time-varying patterns. 
A two-layer Elman network is shown in Fig. 3. The Elman 
network has tangent sigmoid (tansig) neurons in its hidden 
(recurrent) layer and pure linear (purelin) in its output layer. 
The Elman network differs from the conventional two-layer 
networks in that the first layer has a recurrent connection. The 
delay in this connection stores the values from the previous 
time-step, which can be used in the current time-step. Thus, 
even if two Elman networks with the same weight and bias 
are given identical inputs at a given time-step, their outputs 
can be different owing to the different feedback states. As the 
network can store the information for future reference, it can 
understand the temporal pattern as well as spatial patterns 
[15][16][17][18]. The Elman networks can be trained to 
respond and generate both kinds of patterns. 

    
2

1
1,2

2

1
1

1,11,1
1 1tan

bnaLWpurelinn

bnaLWpIWsigna

a
                 (9) 

In this study, the architecture 4:8:8:4 RNN was used, where p,
, , , , , , and  are vector 

input, recurrent-layer output, purelin-layer output, weight 
first-layer, weight hidden layer back to first-layer, weight 
hidden layer to output layer, and biases, respectively. The 
RNNs were developed with 1000 data points. Tansig and 
purelin activation function were used at hidden and output 
layer, respectively.  Data time series were obtained from 
mathematical (exact) model of Eq. (4) Eq. (7), respectively. 
The network performance was measured by mean square 
error (MSE). Mathematically, MSE can be expressed in the 
form of an equation as follows.   

)(1 na )(2 na 1,1IW 1,1LW 2,1LW 1b 2b

Eq0'
jXd'

VT
ZTL

ZS

V

(a)

k

i
nn xx

k
MSE

1

2ˆ1                               (10) 

where k, , and are the size of data, input, and 
estimation of nth data. 

nx nx̂

sM
1

s
B

D

em TT

(b)
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IV.  CHAOTIC SENSITIVITY TO INITIAL 
CONDITIONS 

The chaos definition and its properties have been given 
by Devaney and Alligood et al. [13][14]. Sensitivity of the 
initial condition is one type of chaos properties. It is described 
by the existing route to chaotic behavior in the power systems 
caused by sensitivity of initial-condition rotor speed ( 0). 
Rotor speed ( 0) in the power systems is presented by 
disturbing energies (DE). Kinetic energy disturbance is 
exclusively related to the rotor speed. If DE is larger, then it 
will result in larger rotor speed. When DE<1.3824 rad/sec 
( 0<1.3824 rad/sec), the power system can converge to a 
stable equilibrium point. If DE increases, the convergence 
becomes more difficult. At 0 = 1.3825 rad/sec, the power 
systems will route to a chaotic behavior in a longer duration. 
At a range of 1.3825 17003 rad/sec, the final states are 
controlled by a chaotic behavior. Furthermore, if the rotor is 
>1.7004 rad/sec, then the system will undergo monotonic 
divergence or collapse. It has been proven that chaotic 
behavior in the power systems caused by injecting energy 
results in unexpected disturbances.  

Figure 3. Block diagram of RNN [18]. 

TABLE II. SYSTEM CONDITIONS WITH DIFFERENT INITIAL 
ROTOR SPEEDS ( 0) [6]. 

0(rad/sec) Time  (sec) Final state Time response 
0.5 1000 Equilibrium point Fig. 4(a) 
1.3824 1000 Equilibrium point Fig. 4(b) 
1.3825 1000 Chaotic Fig. 5(a) 
1.7003 1000 Chaotic Fig. 5(b) 
1.7004 10 Divergence 

Figure 4. Simulation results with equilibrium point state. 

Figure 5. Simulation results with chaotic state. 

+

D

+

1

p
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12 xS

na2

1

Figure 6. (a)  Magnification of  Fig. 5 between 0 and 250 sec. 

(b) Magnification of  Fig. 5 between 0 and 50 sec. 

V. RESULTS AND ANALYSIS 
The RNN initial simulation parameters were obtained  as 

follows: 0.17 for learning rate train parameter, 1.2 for 
increment learning rate, 0.6, and 0.75 for decrement learning 
rate and momentum learning rate, respectively. The training 
performance of RNN using adaptive learning rate with 
momentum is shown in Table III. 

The training process was organized as follows: the RNN 
performances (MSE) were obtained as 14.7001 10 4 and 
4.2209 10 4 at a disturbance of 0 = 0.5 rad/sec for algorithm 
back-propagation adaptive learning rate (traingda) and back-
propagation learning rate algorithm with momentum 
(traingdx), respectively. Subsequently, at the disturbance of 

0 1.3825 and 1.7003 rad/sec, the performances (MSE)  for 
algorithm back-propagation adaptive learning rate (traingda) 
and algorithm back-propagation adaptive learning rate with 
momentum (traingdx) were 16.8361 10 4 and 4.6115 10 4,
and 17.4185 10 4 and 4.9442 10 4, respectively. 
Furthermore, during the training process the best performance 
(MSE) was obtained as 4.2209 10 4 at the disturbance          
of 0 = 0.5 rad/sec.
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Figure 7. Rotor speed ( ) time response at chaotic state at                   
0 = 1.7003 rad/sec. (a) Blue = exact; red = RNN. (b) Error signal. 

Figure 8. Voltage angle ( L) time response at chaotic state at                      
0 = 1.7003 rad/sec. (a) Blue = exact; red = RNN. (b) Error signal. 

Figure 9. Voltage magnitude (VL) time response at 0 = 1.7003 rad/sec.
(a) Blue = exact; red = RNN. (b) Error signal  VL.

TABLE III.  PERFORMANCES TRAINING ALGORITHM 
USING LEARNING RATE WITH MOMENTUM. 

Training Time  
(sec 102)

Performances
MSE ( 10 4)

0
(rad/sec)

traingda traingdx Traingda traingdx
0.5 69.3861 37.403 14.7001 4.2209 
1.3824 68.3250 42.342 17.2014 4.9080 
1.3825 67.3329 36.750 16.8361 4.6115 
1.7003 70.5781 41.840 17.4185 4.9442 

Figures 7 9 illustrate the result of time response by exact 
and RNN models. Figure 7(a) shows the rotor speed ( ) time 
response which is oscillated by the disturbance occurring at 

0 = 1.7003 rad/sec. Rotor speed oscillations for exact and 
RNN exist in range from 1.6052 to 1.5679 rad/sec and           

1.5411 to 1.6045 rad/sec, respectively. The difference in 
both these signals, known as rotor speed error signal, is 
shown in Fig. 7(b), where at this moment, the rotor speed 
exhibits chaotic behavior.  

The voltage angle ( L) at Bus 2 is affected by disturbing 
rotor speed at the generator bus ( 0 = 0.5 rad/sec). The 
oscillation on the voltage angle occurs at the generator bus in 
735 sec. Furthermore, this oscillation decreased gradually and 
route to equilibrium state (fixed point) at the point of 0.1128 
rad and 0.1116 rad for exact and RNN model, respectively. 
The error signal is measured by MSE (MSE = 3.8193%).  
This result is shown in Table IV.  

Oscillation voltage angle was observed to increase at the 
disturbance 1.3824, 1.3825, 1.600 and, 1.7003 rad/sec for the 
exact model with amplitude in the ranges from 0.0600 to         
0.1995 rad, 0.0351 to 0.2730 rad, 0.0345 to 0.2748 rad and 
0.0340 to 0.2756 rad, respectively; while the oscillation for 
the RNN model are in the ranges from 0.0501 to 0.1879 rad, 
0.0460 to 0.2644 rad, 0.0332 to 0.2618 rad, and 0.0342 to 
0.2613 rad, respectively. This oscillation occurred for a 
longer duration. The voltage angle time-response occurring at 
disturbance 0 = 1.7003 rad/sec is shown in Fig. 8. 

At disturbance 0 = 0.5 rad/sec, the voltage magnitude 
was oscillated in 410 sec. Furthermore, it decreased gradually 
route to equilibrium state (fixed point) at point 1.095 and 
1.008 pu for exact and RNN model, respectively. By 
increasing the disturbance at 0 = 1.3824 rad/sec, the voltage 
magnitude was oscillated for a longer duration in the range 
from 0.9967 to 1.1207 pu for exact model, and subsequently, 
the amplitude was reduced and fixed point at 1.1095 pu   
(1520 sec).

On the contrary, when the disturbance was increased up 
to 1.3825, 1.600, and 1.7003 rad/sec, the voltage magnitude 
oscillated for the exact model with increasing amplitude in 
the ranges from 0.8307 to 1.1220 pu, 0.8285 to 1.1118 pu, and
0.8290 to 1.1119 pu, respectively; whereas, the oscillation for 
the RNN model were in the ranges from 0.8497 to 1.1158 pu,
0.8580 to 1.1235 pu, and 0.8642 to 1.1185 pu, respectively.

State trajectory (orbit) of the  vs.   is shown in Fig. 10, 
where the circles are made by themselves with boundary 
ranges from 1.6011 to +1.5535 rad/sec, and 0.1165 to 
+0.7583 rad  for min to max and min to max, respectively.  
State trajectory for the RNN model was made in the ranges 

1.6020 to +1.5524 rad/sec and 0.1645 to +0.7598 rad. This 
form is known as the strange attractor (chaotic attractor).   
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The strange attractors are made by L vs. VL state 
trajectories, as shown in Fig. 11 at coordinates in the ranges 
from 0.0345 to 0.2748 rad and 0.8285 to 1.1118 pu for Lmax to

Lmin and VLmax to VLmin, respectively; subsequently, the RNN 
model in the ranges from 0.0332 to 0.2618 rad and 0.8280 to 
1.1235 pu for Lmax to Lmin and VLmax to VLmin, respectively.

Furthermore, existence of the chaotic attractors is also 
depicted in Figs. 12 and 13 for 0 = 1.7003 rad/sec.  Figure 12 
illustrates  vs.   state trajectories at coordinates from 

1.6052 to +1.5679 rad/sec and 0.1157 to +0.7601 rad  for 
min to max and min to max, respectively. The results from the 

RNN model are depicted by the red circles at coordinates from 
1.5410 to +1.6045 rad/sec and 0.1345 to +0.7457 rad for 
min to max and min to max, respectively.

TABLE IV. SYSTEM STATE WHEN VARIATION OF 
DISTURBANCE ( 0) IS APPLIED. 

0 and
Model

 (rad) (rad/sec) L(rad/sec) VL(pu) 

0.5 
exact

Eq 0.3095 Osc 0.2104   
to 0.2123 

Eq 0.1128 Eq 1.095 

RNN Eq 0.3194 Osc 0.2048   
to 0.2090 

Eq 0.1116 Eq 1.008 

MSE
(%) 0.2636 6.1792 3.8193 6.9051 

1.3824 
exact

Osc 0.0245    
to 0.6160 

Osc 1.1546   
to 1.1049 

Osc0.0600
to 0.1995 

Osc0.9967
to 1.1207 

RNN Osc 0.0256    
to 0.6165 

Osc 1.0246   
to 1.0049 

Osc0.0501
to 0.1879 

Osc0.9970
to 1.1135 

MSE
(%) 3.9625 6.3023 0.2040 0.1154 

1.3425 
Exact

Osc 0.1156    
to 0.7578 

Osc 1.5711   
to 1.5142 

Osc0.0351
to 0.2730 

Osc0.8307
to 1.1220 

RNN Osc 0.1148     
to 0.7510 

Osc 1.5734   
to 1.5165 

Osc0.0460
to 0.2644 

Osc0.8497
to 1.1158 

MSE
(%) 0.68 0.23 1.09 1.90 

1.6000 
Exact

Osc 0.1165    
to 0.7583 

Osc 1.6011   
to 1.5535 

Osc 0. 0345 
to 0. 2748 

Osc 0.8285 
to 1. 1118 

RNN Osc 0.1645    
to 0.7598 

Osc 1.6020   
to 1.5524 

Osc 0.0332 
to 0. 2618 

Osc 0.8580 
to 1. 1235 

MSE
 (%) 0.2163 2.8779 0.0460 0.0407 

1.7003 
Exact

Osc 0.1157     
to 0.7601 

Osc 1.6052   
to 1.5679 

Osc 0. 0340 
to 0. 2756 

Osc 0.8290 
to 1. 1119 

RNN Osc 0.1345 
to 0.7457 

Osc 1.5410     
to 1.6045 

Osc 0.0342 
to 0. 2613 

Osc 0.8642 
to 1. 1185 

MSE
 (%) 1.0522 7.8296 0.1284 0.1470 

Note: Eq = equilibrium point (fixed point); Osc = oscillation. 

Figure 10. State trajectory with disturbance at 0 = 1.600 rad/sec. 

Figure 11. L VL State trajectory  when applied disturbance                    
at 0 = 1.6000 rad/sec. 

Figure 12.  State trajectory  when applied disturbance                        
at 0 =1.7003 rad/sec. 
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Figure 13. L VL State trajectory  when applied disturbance                       
at

[7]  L. Zhao-Ming, L. Zuo-Jun, S. He-xu, L. Hong-Xun, 
“Control and Application of Chaos in Electrical 
System”, Proceedings of the Fourth International 
Conference on Machine Learning and Cybernatics, 
Guangzhou, 18-21August 2005. 

0 = 1.7003 rad/sec. 
Figure 13 illustrates L vs. VL state trajectories at 

coordinates 0.0340 to 0.2756 rad and 0.8290 to 1.1119 pu for 
Lmax to Lmin and VLmax to VLmin, respectively. The state 

trajectories RNN model is depicted by the red points at 
coordinates 0.0342 0.2613 rad and 0.8642 1.1185 pu for Lmax 

to Lmin and VLmax to VLmin, respectively. The complete results 
are tabulated in Table IV. 

The RNN performance can be measured by difference 
signal output from exact and RNN models. From Table IV we 
can observe that the largest MSE is 7.8296% obtained on 
speed rotor  at disturbance 1.7003 rad/sec. On the contrary, 
the least MSE is 0.0407% obtained on the load angle at 
disturbance 1.600 rad/sec. Thus, it is proven that chaotic 
behavior in power systems can be modeled by RNN.   

VI. CONCLUSIONS 

In this paper, extensive investigation was carried out on 
the chaotic oscillation by exact and RNN model. The training 
by using adaptive learning rate, both with and without 
momentum was compared, and the adaptive learning rate 
performance with momentum was found to be better. Chaotic 
behaviors were detected in the power systems by the chaotic 
attractors both at the power angle-rotor speed and magnitude-
angle voltage state-trajectories in the phase-plane. The largest 
MSE is 7.8296% obtained on the rotor speed  at disturbance 
1.7003 rad/sec. On the contrary, the least MSE was 0.0407%
obtained on the load voltage at disturbance 1.600 rad/sec. 

FUTURE WORK 

Recently, chaotic behavior in power systems has been the 
topic of interest in research. The chaotic behavior can be 
reduced from power systems by properly applying the control 
strategy.
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