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Background and aims: West Nusa Tenggara Province has the fifth-highest prevalence of stunting cases in
Indonesia. So far, limited research is available to understand the likelihood of stunting in this region.
Transforming Growth Factor-Beta 1 (TGF-b1), an immunoregulatory cytokine, may affect the stunting
progression. Knowledge of messenger mRNA expression in the TGF-b1 gene in stunted toddlers could
help to determine therapeutic targets to catch up on their growth.
Objective: This study compared the expression of TGF- b1 mRNA and TGF-b1 concentrations in the
stunted and the non-stunted toddlers. The nutritional status of all participants was also gathered and
linked to the stunting issue.
Methods: A cross-sectional study was conducted on 48 toddlers aged 12e36 months. The stunting case
was defined as a Z-Score of less than �2 of length/height for age according to WHO. The serum TGF-b1
and TGF-b1 gene mRNA were measured using ELISA and RT-PCR, respectively. The nutritional status data
were collected through interviewer-administered structured questionnaire to the toddlers' parents and
48-h food recalls. Descriptive analyses were applied to determine the distribution of participants’
macronutrient and micronutrient levels.
Results: Results show that there were significant differences in expressions of the TGF- b1 gene mRNA of
the stunted and the non-stunted toddlers. The expression of the TGF- b1 mRNA gene in the non-stunted
toddlers was also higher with 13.7 ± 0.859 fold change than those of the stunted toddlers with
9.01 ± 1.76 fold change with a p-value <0.001. The serum TGF-b1 concentrations in the stunted toddler
(6.20 ± 3.60 pg/ml) were significantly lower than the ones in the non-stunted toddlers (14.3 ± 1.05 pg/
ml) with p-value <0.001. However, there was no clear relationship between the likelihood of stunting
and the nutritional status from the obtained data.
Conclusion: Overall findings demonstrate the significantly lower both the TGF-b1 gene mRNA expression
and serum TGF-b1 for the stunted toddlers than the non-stunted toddlers, impacting bone formation and
resorption. The outcomes of this study encourage the development of interventional therapy for stunted
toddlers by increasing the serum TGF-b1 concentrations.

© 2022 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights
reserved.
1. Introduction

Stunting is a short stature situation assessed by measuring body
length or height. It is caused by inadequate nutrition or poor health
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conditions. Apart from directly affecting height, stunting has long-
term impacts on intelligence, immunity, and productivity [1].
Indonesia has the fifth-highest rate of stunting in the world. The
prevalence of stunting for Indonesian children under five is higher
compared to neighboring countries, such as Vietnam (23%), Malaysia
(17%), Thailand (16%), and Singapore (4%) [2]. The 2014 Global
Nutrition Report showed that Indonesia has been one of the coun-
tries still facing the three nutritional problems, i.e., stunting, wasting,
and/or overweight in children under five [3].
y Elsevier Ltd. All rights reserved.
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Based on the national basic health research, the proportions of
short toddlers in Indonesia were 36.8% in 2007, 37.2% in 2013, and
30.8% in 2008, corresponding to around 7 million toddlers. West
and East Nusa Tenggara are among the five provinces with the
highest stunting rates (32%).Without any intervention, the stunting
rate will threaten the future since it affects the quality of Human
Resources (HR). West Nusa Tenggara province was ranked 30th out
of 34 in Indonesia in terms of the Human Development Index,
reflecting its poor human development performance [3].

Stunting associates well with bone physical growth and struc-
ture. Transforming Growth Factor-Beta 1 (TGF-b1) has been well
known for its essential role in bone formation, mineral storage, and
hematopoietic cell formation. Recent research shows the active role
of TGF-b1 in bone metabolism and osteoimmunology [4]. Bone is a
rigid organ with many functions, such as mechanical support for
joints and tendons, protecting soft tissue or various organs from
mechanical stress or trauma, mineral storage, hematopoietic cell
formation, and hormone production.

The growth hormone is one of the factors affecting stunting [5].
The growth hormone regulates osteoblasts and osteoclasts during
the growth of bones. Osteoblasts trigger the bone growth process,
while osteoclasts inhibit the growth by providing some sort of
control. TGF-b1 is an immunoregulatory cytokine that regulates
immune cell proliferation, apoptosis, differentiation, and migration
[6]. Besides, TGF-b1 plays essential roles in bone formation, mineral
storage, and hematopoietic cell formation [7]. TGF-b1, which can be
found in the bone matrix, also helps form and regulate osteoblasts
and is active during bone formation [8,9].

Several micronutrients are required for adequate children's
growth. Yet, it has been unclear which nutrient deficiency likely
contributes to stunting in populations with the risk of poor nutri-
tion. Several micronutrients, including zinc, iron, and vitamin A,
have been associated with immune function and risk of morbidity,
affecting growth [10].

By considering the important roles of TGF-b1 in bone formation,
this study examines the correlation between TGF-b1 and stunting,
which is scarcely available in the literature and is linked with the
level of macronutrients micronutrients intake. This study combines
molecular biology in assessing stunting cases, linked with the
nutritional status of the participants. A cross-sectional study was
conducted on 48 toddlers aged 12e36 months by measuring their
serum TGF-b1 and TGF-b1 gene mRNA using ELISA and RT-PCR
examination, respectively.

2. Materials and methods

The study populations were stunted and non-stunted toddlers
aged 12e36 months in the Teruwai Community Health Centre,
Central Lombok Regency, West Nusa Tenggara, Indonesia. All of
them lived with biological parents and had a complete history of
basic immunization. The stunting status was defined as a Z-
Score <�2 of length/height according to the calculation byWHO. A
total of 24 healthy toddlers in the stunted and the non-stunted
group were selected. The required number of participants was
determined statistically. The number of test participants for each
group were minimized to reduce the costs. They were estimated
using Cochran's method [11] by setting the confidence interval of
95% and a margin of error of 10%. The study participants were
randomly selected from the total number of toddlers population of
1214, of which 75 suffered stunting resulting in the minimum
required number of test participants of >23. Toddlers under the
following conditions were excluded from the study: sick or had
experienced sickness within the last three months, had congenital
disabilities, a history of low body birth weight or premature birth, a
history of labor by vacuum extraction or chunam, and had a history
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of asphyxia. The exclusion of those toddlers was done to exclude
stunted toddler originated from infection, sickness, and/or
congenital disorder.

The study was conducted via a cross-sectional mRNA expression
of the TGF-b1 gene and serum TGF-b1 concentration in the stunted
and the non-stunted toddlers. The TGF-b1 gene mRNA expressions
were examined using RT-PCR, while the soluble serum TGF-b1
concentrations were examined using the ELISA method.

The collection and treatment of blood samples were done by
following a method detailed elsewhere [12,13]. A blood sample of
100 ml taken from the veins was introduced into a tube containing
900 ml of L6 lysis buffer solution. The mixture was then centrifuged
under a speed of 1200 rotations per minute (RPM) for 10 min. The
supernatant was removed and the precipitate containing the
extracted RNA was further centrifuged for 3 min under a speed of
1200 RPM, followed by the addition of 20 ml diatom suspension. The
extracted RNA could then be settled down. Subsequently, the
diatom suspension was constantly stirred by placing on a gyratory
shaker set at a speed of 100 RPM for 10 min. The mixture of diatom
suspension and the L6 lysis buffer was centrifuged again using an
Eppendorf microcentrifuge under a speed of 12,000 RPM for 15 s.
The supernatant was separated by careful sucking with a Pasteur
pipet linked with a vacuum pump to leave around 10 ml of the re-
sidual suspension. The supernatant was then washed twice using
1 ml of washing L2 buffer. The L2 buffer of 1 ml was first added
before the mixture was rotated and centrifuged (under a speed of
12,000 RPM for 15 s), followed by the removal of the supernatant.
Then, the precipitate was washed again using 1 ml ethanol (70%)
twice, followed by centrifugation for 15 s at a speed of 12,000 RPM.
Afterward, the precipitate was washed by mixing with 1 ml of
acetone, followed by centrifugation for 15 s at a speed of 12,000
RPM. The precipitate was then dried and the cap was let open in an
oven at 50e55 �C for 10 min. The dry precipitate was then solubi-
lized in a tube using a 60 ml of TE buffer, and stirred until well
mixed. The tube was then incubated in an oven at 56 �C for 10 min.
Subsequently, the mixture was centrifuged at a speed of
12,000RPM for 30 s. Finally, about 40e50 ml of the supernatant was
then taken and stored at a temperature of �80 �C.

Measurements of the serum TGF-b1 concentrations were con-
ducted using the ELISA (enzyme-linked immunosorbent assay)
method detailed elsewhere [14], which were done in duplicate to
ensure reproducibility. The TGF-b1 (LSBio®) analysis was done
using the ELISA kit and ELISA Reader 270 (Biomerieux, France) with
a wavelength of 450 nmwithin 30 min. The serumwas taken from
the storage (�80 �C) and stored in a freezer. Firstly, 100 ml of an
assay diluent containing buffer protein was inserted into each well.
Next, 100 ml of the standard solution was added. The standard so-
lution contained a target recombinant mice protein TGF-b1 kit
(LSBio, USA) which did not require inter- and intra-assay coefficient
calculations. The mixture in the wells was then incubated for 2 h at
room temperature. Afterward, the solutionwas sucked and washed
for four times with phosphate-buffered saline (PBS), followed by
the addition of 200 ml of the conjugate solution containing strep-
tavidin HRP into each well and further incubated for 2 h at room
temperature. Later, the solution was sucked and rewashed four
times using PBS and added with 200 ml of TMB ELISA substrate
solution into each well, before further being analyzed using the
ELISA reader 270 (Biomerieux, French).

The measurements of the TGF-b1 mRNA expression were con-
ducted using the RT-PCR examination (Real-Time System PCR Bio-
Rad®) at The Molecular Biology and Immunology Laboratory, Faculty
of Medicine, Hasanuddin University. The primers used were TGF-b1
were 50-TGGCGATAC CTCAGCAACC-30 and TGF-b1 ref of 50-CTCGTG
GAT CCA CTT CCA G-30 genes. The housekeeping gene GAPDH was
usedas internalcontrolGAPDHfor the50-CCAGCCGAGCCACATCGCTC-



Table 2
Gender proportion of the participants.

Gender Nutritional Status

Stunting Non-stunting P-value

n (24) % n (24) %

Boy 6 26.1 17 73.9 0.004
Girl 18 72 7 28
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30 gene and GAPDH Rev of 50-ATGAGCCCCAGCCTTCTCCAT-3’. The RT-
PCR was run under the condition of 95 �C for 10 s and 57 �C for 15 s
performed under 40 cycles, adjusted according to the protocol sug-
gested earlier [15], where the RT-PCR employed the SYB Green dye-
based RT-PCR master mix kit in one stage. This protocol was opti-
mized in the RT-PCR machine CFX Connect System (USA) instrument
by adjusting the color according to the guideline.

To allow linkage between the expression of TGF- b1 mRNA and
TGF-b1 concentrations and the nutritional status of the partici-
pants, an interviewer-administered structured questionnaire, and
48-h food recall were used to collect the information on the
nutritional data. For the children, the consent for participation in
the study was signed by their parents; and the questionnaire-based
interview was conducted by their parents. The nutrient intake data
were processed using Nutrisurvey 2007 software to obtain the level
of energy consumption, the level of macronutrients, and micro-
nutrient intake.

The data obtained were processed and statistically analyzed
using the Chi-square, the Independent t-test, and the Pearson
correlation test to evaluate both the TGF-b1 protein concentrations
and TGF-b1 mRNA expression. Descriptive analyses were applied to
determine the levels of macronutrients and micronutrients distri-
butions of the participants.

Apart from identifying the role of the TGF-b1 on stunting,
several stunting risk factors were addressed in the participants to
justify the findings. The risk factors included feeding frequency,
energy consumption rate, level of macronutrient consumption
(carbohydrate, protein, fat), and level of micronutrient (Vitamin A,
Calcium, iron, and Zinc) consumption.

3. Results

3.1. TGF-b1 in stunted toddler

3.1.1. Participant's anthropometric characteristics
Table 1 compares anthropometric characteristics of the stunted

and non-stunted toddlers. The physical indicators of stunted par-
ticipants can be seen clearly from their weight and height. Despite
having similar average age, all stunted toddlers had significantly
lower weight (9.99 ± 0.74 vs 12.8 ± 2.5 kg) and lower height
(81.1 ± 3.23 vs 88.5 ± 4.85 cm). The Z-scores of the stunted groups
in terms of weight and height were 0.59 and 0.69 below the means,
respectively. It means that the differences in weight and height
between the stunted and the non-stunted groups were higher than
1.18 and 1.38 times the respective standard deviation. Moreover,
the t-test results show that both the weight and the height of the
stunted group were significantly lower than the whole participants
with p-values of 0.0065 and 0.0035, respectively.

3.1.2. Gender proportion
Table 2 shows the gender proportion of the two participant

groups. Based on the ChieSquare Test, there was a significant
relationship between gender with nutritional status (p < 0.05). The
number of girls who suffered from stunting was higher (72%) than
Table 1
Nutritional status of the participants.

Variable Nutritional Status

Stunting Non-stunting P-value

Mean SD Mean SD

Age (month) 30.5 3.87 30.1 4.2 0.502
Z-Score H/A �2.96 0.58 �0.81 0.82 0.058
Z-Score W/A �2.18 0.53 �0.41 0.85 0.020
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boys (26.1%). This finding represents the situation in the sampling
location. It does not universally apply. However, the finding may
imply that being a female is a risk factor influencing stunting. Such
deduction, however, shall be further analyzed in detail in the future
study. Evidence from earlier studies shows that being a female has
been reported as one of the risk factors for stunting in Northern
Ethiopia [16].

3.1.3. Concentration of TGF- b1 serum
Figure 1A shows that there is a clear difference between the

concentration of TGF-b1 serum for the stunted group (6.20± 3.60 pg/
ml) and the non-stunted group (14.3 ± 1.05 pg/ml). Based on the
independent sample t-test between the nutritional status of the
stunted and the non-stunted toddlers, TGF-b1 serum concentrations
were found to be significantly lower for stunted than the non-
stunted toddlers with p < 0.001.

3.1.4. mRNA expression
Figure 1B shows the analysis with an independent sample t-test

for mRNA expression between groups of the stunted and non-
stunted toddlers. Results show that the mRNA expression of the
TGF-b1 gene in non-stunted toddlers was higher (13.7 ± 0.859-fold
change) than in the stunted ones (9.01 ± 1.76 fold change) with a p-
value < 0.001. The Pearson correlation test between the mRNA
Expression of the TGF-b1 gene and TGF-b1 serum concentrations
against stunted and non-stunted toddlers found a strong correla-
tion with a p-value of <0.001 and correlation coefficient of
r ¼ 0.935.

3.2. Other risk factor analysis

To assess risk factors of stunting and confirm their effect on the
participants in this study, a few factors/parameters were evaluated,
namely: feeding frequency, energy consumption level, the con-
sumption level of macronutrients, and lastly, the consumption level
of micronutrients.

3.2.1. Feeding frequency
The daily feeding frequency for the participants was classified

into two categories, namely the frequency of eating <3 times a day
and �3 times a day. The distribution of daily feeding frequency for
the participants can be seen in Fig. 2. In the stunted toddler group,
most of the participants had a frequency of eating <3 times a day
(70.8%). Meanwhile, the participants of the non-stunted toddlers
mostly have a frequency of eating >3 times a day (75.0%). It was
observed that for the community where the study was conducted,
the frequency, and texture of the food were appropriate, but the
amount, variety, and hygiene were still inaccurate. As such the
feeding practice is one of the specific nutritional interventions that
can be carried out to prevent and overcome stunting [17,18].

3.2.2. Energy consumption rate
The levels of energy consumption in Fig. 3 were categorized into

four based on recommended dietary allowance (RDA): severe
deficit (<70%), mild deficit (70e80%), normal (81e120%), excess



Fig. 1. (A) Concentrations of TGF- b1 serum of the stunted (n ¼ 24) and the non-stunted (n ¼ 24) participants (P < 0.001), and (B) the mRNA expression of TGF- b 1 gene of the
stunted and non-stunted participants (P < 0.001).
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(>120%). Based on the categories, the average energy consumption
of the participants was 804.1 kcal, with the lowest energy con-
sumption of 269.1 kcal and the highest of 1654.2 kcal.

3.2.3. Level of macronutrients’ consumption
Themacronutrient uptakes for the participant toddlers including

carbohydrate, protein, and fat consumption are summarized in
Fig. 4. The average protein consumption for the toddlers was 30.1 g
(lowest-highest: 4.5e77.0 g), fat 32.8 g (lowest-highest: 2.9e73.7 g),
carbohydrates 95.3 g (lowest-highest: 14.5e192.8 g). Based on Fig. 4,
most of the levels of carbohydrate consumption fell under the se-
vere deficit category, in which the stunted group was 79.1% and the
non-stunted toddler group was 70.8%. Most of the protein con-
sumption levels in the stunted group were in the normal category
(41.7%). Meanwhile, in the non-stunted group, the level of protein
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consumption was in the excess category (50.0%). Most of the levels
of fat consumption in the stunted group fell under the severe deficit
category (54.2%). Meanwhile, in the non-stunted group, the levels of
fat consumption were mostly in the normal category (41.7%).

3.2.4. Level of micronutrients consumption
The levels of micronutrient consumption consist of vitamin A,

calcium, iron, and zinc. The distribution of micronutrient con-
sumption levels for the participants in this study is presented in
Fig. 5. The average consumption of vitamin A was 228.9 mg (ranged
from 1.5 to 10.345.0 mg), calcium 129.7 mg (ranged from 11.3 to
1575.0 mg), Fe 3.66 mg (ranged from 0.8 to 17.5 mg), and zinc
3.3 mg (ranged from 0.7 to 9.1 mg). Most of the levels of con-
sumption of vitamin A, calcium, iron, and zinc in the stunted and
non-stunted childrenwere in the severe deficit category. The levels



Fig. 2. Daily meal frequency of the participants.

Fig. 3. Distribution of participants' energy consumption levels, categorized based on the 2012 energy adequacy of 1125 kcal of recommended dietary allowance.

L. Nurbaiti, N.A. Taslim, A. Bukhari et al. Clinical Nutrition ESPEN 49 (2022) 208e216
of vitamin A, calcium, iron and zinc consumptions for the non-
stunted and stunted groups were 83.3% and 79.2%, 95.8% and
83.3%, 79.2% and 70.8%, and 91.6% and 83.3%, respectively.

4. Discussion

This study demonstrates significant differences in the expres-
sion of the TGF-b1 gene mRNA and serum TGF-b1 concentrations
between the stunted and the non-stunted toddlers. The TGF-b1
gene mRNA has a strong association between bone cells [19] and
eventually can be associatedwith the likelihood of stunting. TGF-b1
has an important role in bone formation, mineral storage, and he-
matopoietic cell formation [20,21]. TGF-b1 interacts with bone
component cells, such as osteoblasts, osteoclasts, chondrocytes,
mesenchymal stem cells, hematopoietic rods, and other hormones
[4,22].

The results of this study are in line with the previous study,
which states that bone resorption can be induced by increased T-
cell activation and TNF-alpha production and that TGF-b1 signaling
prevents bone loss [7]. There are indirect roles of TGF-b1 in
affecting stunting through its roles in bones developments. Other
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reports also mentioned that factors such as TGF-b1 and Bone
Morphogenic Proteins (BMP) affect bone cell function. The
resorption and bone formation systems allow bone formation
waves to follow each cycle of bone resorption [8,9]. TGF-b1 is found
in bones and serves to inhibit osteoblast differentiation. TGF- b1
inhibits the CBFA1 expression and the osteocalcin gene mediated
by Smad3. Smad3 repression mediated by CBFA1 functioned in the
regulatory mechanism of osteoblast differentiation inhibition by
TGF-b1 [23,24].

Another TGF-b1 family that has an important effect is BMP. BMP
begins the cartilage formation and the osteogenesis [8]. Both TGF-
b1 and BMP involve in most cellular processes. The coordinated
activity of Smads activated by Runx2 and TGF-b or BMP is impor-
tant for skeletal formation. TGF-b1 inhibits the proliferation of
myoblasts and the formation of fibrosis. Specific inhibition by TGF-
b1 can increase the skeletal muscle's ability to regenerate [25e27].

Compelling evidence from earlier work has demonstrated a
strong association between the immune and skeletal systems (so-
called Osteoimmunology), including the critical role of TGF-b1 in the
development and maintenance of the skeletal tissue [7], as well as
stunting, as demonstrated in this study. Bone remodeling is an



Fig. 4. Distribution of the participants macronutrient consumption levels.
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active and dynamic process that depends on the correct balance
between bone resorption by osteoclasts and osteoblasts' bone
deposition [7]. The bone remodeling process consists of three pha-
ses: bone resorption initiation by osteoclasts, the transition from
resorption to new bone formation, and bone formation by osteo-
blasts. Those processes occur due to the osteoclasts, osteoblasts,
osteocytes, and bone layer cell coordination, which form a tempo-
rary anatomical structure called the Basic Multicellular Unit [4].

As the matrix grows, osteoblasts and osteocytes communicate
with each other. Osteoblasts secrete organic matrices that are solid
collagen [28]. Osteoclast precursors originate from the spleen and
liver and then travel to blood vessels close to the newly formed
bone trabeculae. Osteoclast precursors combine to form multinu-
cleated osteoclasts and absorb most of the newly formed bone.
Osteoblasts and osteoclasts must be balanced to maintain skeletal
integrity and calcium metabolism [29].

A very strong correlation between TGF-b1 serum concentrations
with the mRNA expression of the TGF-b1 gene is shown from the
Pearson correlation coefficient. It implies that for stunted toddlers,
both the TGF-b1 serum concentrations and the mRNA expression of
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the TGF-b1 gene are significantly lower than that of the non-
stunted toddlers. Such finding can be explained as follow. Stunt-
ing is preceded by intestinal mucosal damage and microbiome
changes associated with systemic inflammation [30]. Indeed, there
is an established association between stunting and environmental
enteric disorder. A small-intestine enteropathy is highly prevalent
in low-resource countries and is characterized by mucosal
inflammation, small intestine villi flattening, and increased intes-
tinal permeability [31]. These disorder's triggers are probably
inadequate diet, continuous exposure to environmental contami-
nants, and/or an alteration of the normal commensal flora [30]. In
the gut, intestinal epithelial cells (IECs) as well as selective immune
cells, including dendritic cells (DCs), are important sources of
bioactive TGF-b [32]. Epithelial cell injury and gut inflammation
have both been demonstrated to enhance TGF-b production by IECs
[33]. There is also growing evidence to suggest that the microbiota
also regulates IEC-derived TGF-b. Several Clostridium species have
been shown to produce short-chain fatty acids, such as butyrate,
acetate, and propionate, capable of exacerbating TGF-b production
by colonic Ecs [34]. Alcaligenes species, gut-associated lymphoid



Fig. 5. Micronutrient consumption levels (Vitamin A, Calcium, Iron, and Zinc) based on recommended dietary allowance for vitamin A of 350 mg, calcium of 500 mg, Fe of 8 mg and
zinc of 7 mg.
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tissue-resident bacteria, as well as Lactobacillus gasseri SBT2055, a
probiotic bacterium, have been shown to induce TGF-b production
by small intestinal DCs in a TLR2-dependent manner, then induce
IgA production by B cells [35]. Thus, by influencing TGF-b produc-
tion in the gut, the microbiota regulates IgA secretion to strengthen
the intestinal barrier [36].
214
The results show a strong relationship between energy intake
and the number of daily meal intake. The stunted participants
mostly had <3 daily meal intake per day and they were under high
deficit in terms of energy consumption level (Fig. 3). It follows that
appropriate energy intake is highly important for toddlers for
growth purposes.
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Incorrect consumption behavior causes low food consumption
and affects children's nutritional status [37], which is partly also
demonstrated by the results in this study (Figs. 2e5). The protein
consumption levels in Fig. 4C show that the level of protein ade-
quacy was mostly normal and/or in excess for the stunted group. It
follows that there was no clear relationship between protein defi-
ciency and stunting. This finding contradicts other studies [38,39]
that state that there is a significant relationship between protein
deficiency and the incidence of stunting in children under five.
Stunting is caused by a chronic shortage of macro and micro sub-
stances from the womb to toddlers' age. Measurement of nutri-
tional status using a 2-day food recall does not fully represent the
whole nutritional status. Still, results on the food diversity score,
meal frequency questionnaire, and qualitative research methods in
this study can explain the phenomenon of nutritional deficiency,
and in accord with another study [22]. Energy and protein are
needed to form long bone growth plates [40]. Protein plays a role in
carrying the growth hormone, or growth hormone to the growth
plate and muscles so that the body gets longer. If protein and en-
ergy deficiency occurs chronically, therewill be a disturbance in the
growth hormone's balance [38,39].

The bones in humans begin to grow from the embryo, at the age
of 6e7 weeks from the mother's womb's fertilization process. The
growth continues until it is completely composed of 3 months of
gestation. In this phase, the bone formation process is influenced by
calcium and placental hormones [41]. The bones that are formed
are still very soft. However, the bone will continue to grow and
harden until labor arrives. After birth, the process of bone forma-
tion in infants will be influenced by calcium [42], their daily ac-
tivities [43], and also influenced by growth hormones [44,45].
Growth hormone influences osteoblasts and osteoclasts for the
process of bone growth. Osteoblasts work by triggering the bone
growth process, while osteoclasts work by inhibiting this process.
In this phase, the bones formed are cartilages (cartilages) whose
texture is still very soft, and the color is still transparent [9,46].

Stunting can be caused by chronic macronutrient and micro-
nutrient deficiencies from the womb to the age of toddlers and
beyond [47,48]. Measurement of nutritional status using 48 h food
recall only describes the short-term nutritional status, so further
research is needed using the food diversity score method, food
frequency questionnaires, and qualitative research methods to
explain the phenomenon of nutritional deficiency.

Further research is needed to explain the pathomechanism and
role of TGF-b1 and other molecules in the process of stunting.
Furthermore, research on the use of serum TGF-b1 concentrations
as early detection of stunting in toddlers is warranted. These would
provide systematic management to overcome stunting and define
therapeutic targets for pursuing the growth of stunted toddlers.
The development of interventional therapy for stunted toddlers can
be considered by increasing the serum TGF-b1 concentrations with
nutritional therapy and/or other therapies that are simple and cost-
effective.

5. Conclusions

This study demonstrates a significant difference in mRNA
expression of the TGF-b1 gene between the stunted and the non-
stunted toddlers. The mRNA expression of the TGF-b1 gene in non-
stunted toddlers was significantly higher than in stunted toddlers.
Moreover, a significant difference was observed between the serum
TGF-b1 concentrations of stunted and non-stunted toddlers, where
the serum TGF-b1 concentrations in the non-stunted toddlers were
significantly higher than in the stunted toddlers. There was no clear
relationship between the likelihood of stunting and the nutritional
status. Nonetheless, the stunted toddlers had significantly lower
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energy and daily meal intake. This research can be a basis to develop
early detection and stunting intervention modalities in individuals
and the community via TGF-b1 and mRNA expression detections.
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