

CERTIFICATE

PRESENTED TO

Ngudiyono

In recognition and appreciation of your contributions as a **PRESENTER** at the 1st Mandalika International Multi-Conference on Science and Engineering (MIMSE) organized by the University of Mataram and Esa Unggul University

Lombok, Indonesia, September 14th , 2022

Dr. Nur Kaliwantoro, ST., MT. General Chairman of the 1st MIMSE 2022

Peer-Review Statements

Buan Anshari^{1(\Big)}, Mohammed Ali Elsageer², Hilton Ahmad³, and Wen-Shao Chang⁴

¹ Department of Civil Engineering, Engineering Faculty, University of Mataram, Mataram,

Indonesia buan.anshari@unram.ac.id ² Sirte University, Sirte, Libya ³ Universiti Tun Hussein Onn, Parit Raja, Malaysia ⁴ The University of Sheffield, Sheffield, UK

All of the articles in this proceedings volume have been presented at the 1st MIMSE 2022 on September 14, 2022 in Mataram, Indonesia. These articles have been peer reviewed by the members of the Scientific Committee and approved by the Editor-in-Chief, who affirms that this document is a truthful description of the conference's review process.

1 Review Procedure

The reviews were single-blind. Each submission was examined by at least 1 reviewer independently.

The conference submission management system was Easychair.

The submissions were first screened for generic quality and suitableness. After the initial screening, they were sent for peer review by matching each paper's topic with the reviewers' expertise, taking into account any competing interests. A paper could only be considered for acceptance if it had received favourable recommendations from at least one reviewer.

Authors of a rejected submission were given the opportunity to revise and resubmit after addressing the reviewers' comments. The acceptance or rejection of a revised manuscript was final.

2 Quality Criteria

Reviewers were instructed to assess the quality of submissions solely based on the academic merit of their content along the following dimensions:

- 1. Pertinence of the article's content to the scope and themes of the conference;
- 2. Clear demonstration of originality, novelty, and timeliness of the research;
- 3. Soundness of the methods, analyses, and results;
- 4. Adherence to the ethical standards and codes of conduct relevant to the research field;
- 5. Clarity, cohesion, and accuracy in language and other modes of expression, including figures and tables.

B. Anshari—Editor-in-Chief the 1st MIMSE 2022_CA.

B. Anshari et al. (Eds.): MIMSE-C-A 2022, AER 215, pp. 1–2, 2023. https://doi.org/10.2991/978-94-6463-088-6_1

2 B. Anshari et al.

In addition, all of the articles have been checked for textual overlap in an effort to detect possible signs of plagiarism by the publisher. We use Turnitin to find the similarity index. We set to exclude the bibliography and similarity that is less than 3% in this plagiarism checking. The accepted papers are the papers that the similarity index is below or equal 25%.

3 Key Metrics

Total submissions	25
Number of articles sent for peer	25
review	
Number of accepted articles	21
Acceptance rate	84%
Number of reviewers	16

4 Competing Interests

Neither the Editor-in-Chief nor any member of the Scientific Committee declares any competing interest.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Part of **SPRINGER NATURE**

PROCEEDINGS | JOURNALS | BOOKS

Search

Series: Advances in Engineering Research

Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)

PREFACE

Conference name: Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture) Date: 14-15 September 2022 Location: Mataram, Indonesia (Hybrid) Website: https://mimse.unram.ac.id/

The 1st Mandalika International Multi-Conference on Science and Engineering 2022— Track Civil Engineering and Architecture is designed as an environment for researchers to discuss the current state of the science and technology in industry, university and companies. The conference is held hybrid at the Hotel Lombok Raya, Lombok, NTB, Indonesia, on September 14, 2022. This conference is organized by the Faculty ofEngineering, University of Mataram, West Nusa Tenggara, in collaboration with the University of Esa Unggul Jakarta. The MIMSE 2022 has theme of "smart and green technology for a better life".

The articles of the 1st MIMSE 2022—Civil Engineering and Architecture Track come from seven countries all over the world. After peer-review, 21 papers were selected to be published in the Atlantis Publisher. Several excellent keynote and

invited speakers presented state-of-the art findings in the science and engineering. This conference is the result of the hard work, support and dedication of a number of parties. We wish to thank all the committee members who together make the conference possible. We also want to thank our partners for the funding of the conference.

Yours sincerely, Nur Kaliwantoro 1st MIMSE 2022 Chair October 2022

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

PROCEEDINGS
JOURNALS
BOOKS
POLICIES
MANAGE COOKIES/DO NOT SELL MY INFO

Home Privacy Policy Terms of use

y in

Copyright © 2006-2023 Atlantis Press – now part of Springer Nature

Part of **Springer Nature**

PROCEEDINGS | JOURNALS | BOOKS

Search

Series: Advances in Engineering Research

Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)

AUTHORS

86 authors

Afriandi, Ricko Fachri

Assessment Factor of Strength Development for Normal, High Strength, and Lightweight Concretes

Agustawijaya, Ausa R.

Stability of the Meninting Diversion-Spillway Tunnel Constructed into Weak Volcanic Rock Masses Influenced by the Lombok Earthquake 2018

Agustawijaya, Didi S.

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Agustawijaya, Didi S.

Stability of the Meninting Diversion-Spillway Tunnel Constructed into Weak Volcanic Rock Masses Influenced by the Lombok Earthquake 2018

Ahmad, Hilton Peer-Review Statements

Ahmad, Hilton Material Properties and Fracture Energy of Kenaf FRP Composites

Akmaluddin, Akmaluddin

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Akmaluddin, Akmaluddin

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Al-Husainy, Alaa S.

Comparative Investigations on Reactive Powder Concrete with and Without Coarse Aggregate

Anshari, Buan Peer-Review Statements

Anshari, Buan

Comparative Investigations on Reactive Powder Concrete with and Without Coarse Aggregate

Anshari, Buan

Study on the Linear Buckling Behaviour of Two Local Bamboo Species Under Different Length and Boundary Conditions via Finite Element Analysis (FEA)

Azizi, Aqil

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Bagus Budianto, Muh.

Disaster Mitigation Plan Based Flood Event Occurred on January 30th, 2021 in Kuta-Mandalika, Lombok, Indonesia

Chakraborty, Sudipta

Hydraulic Turbulence Caused by Ship Movement and Slope Stability at the Juncture of Dredging and Reclamation

Chang, Wen-Shao Peer-Review Statements

Dewa Made Alit Karyawan, I

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Elsageer, Mohammed Ali

Peer-Review Statements

Fajrin, Jauhar

Hybrid Composite Sandwich Panels for Lightweight Housing Components: Concept and Experimental Results

Fajrin, Jauhar

Analysis of Building Damage to the Housing Sector Based on Post-North Lombok Earthquake 2018 Investigations

Fajriyah, Noor Oktova

The Implementation of Community-Based Agrotourism Concept as Sustainable Design in Rebakong-Kayangan Village, North Lombok Regency

Fradana, Yaya

Analysis of Building Damage to the Housing Sector Based on Post-North Lombok Earthquake 2018 Investigations

Harahap, Insan Harapan

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Harianto, Bambang

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Hasyim

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Hasyim

Traffic Management Simulation to Improve Tanah Aji Intersection Road Network Performance

Irawan, Diki Surya

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Kamase, Giska Ayu Pradana Putri

The Implementation of Community-Based Agrotourism Concept as Sustainable Design in Rebakong-Kayangan Village, North Lombok Regency

Kambekar, A. R.

Hydraulic Turbulence Caused by Ship Movement and Slope Stability at the Juncture Dredging and Reclamation

Karisma, Alan Maulana

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Kartika, Ratri

Passenger Satisfaction Measurement with a SERVQUAL Approach and Proposed Improvements to Non Bus Rapid Transit (BRT) Transjakarta Services Poris Plawad Route – Senayan Bundaran

Karyawan, I Dewa Made Alit

Traffic Management Simulation to Improve Tanah Aji Intersection Road Network Performance

Karyawan, I Dewa Made Alit

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Kencanawati, Ni Nyoman

Assessment Factor of Strength Development for Normal, High Strength, and Lightweight Concretes

Khan, Faisal Irshad

The Development of the SARIMA Model for Flood Disaster Resilience

Lai, Lee Yoke

The Implementation of Community-Based Agrotourism Concept as Sustainable Design in Rebakong-Kayangan Village, North Lombok Regency

Lop, Mohammad Rosnizam

Study on the Linear Buckling Behaviour of Two Local Bamboo Species Under Different Length and Boundary Conditions via Finite Element Analysis (FEA)

Mahendra, Made

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Mahendra, Made

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Mansor, Hazrina

Study on the Linear Buckling Behaviour of Two Local Bamboo Species Under Differ Length and Boundary Conditions via Finite Element Analysis (FEA)

Marlaninstyas, Ria Restu

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Maskur

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Merdana, I Nyoman

Assessment Factor of Strength Development for Normal, High Strength, and Lightweight Concretes

Merdana, I Nyoman

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Muchtaranda, Ismail Hoesain Review of the 2018 Lombok Earthquake, Indonesia, and Its Impact from Previous Studies

Murtiadi, Suryawan

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Murtiadi, Suryawan

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Negara, I Dewa Gede Jaya

The Development of the SARIMA Model for Flood Disaster Resilience

Ngudiyono

Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) to Predict Ultimate Bearing Capacity of Footing on Granular Soil

Ngudiyono

Assessment Factor of Strength Development for Normal, High Strength, and Lightweight Concretes

Ngudiyono

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Nursetyowati, Prismita

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Omar, Zaim Material Properties and Fracture Energy of Kenaf FRP Composites

Pathurahman

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Pracoyo, Atas

Disaster Mitigation Plan Based Flood Event Occurred on January 30th, 2021 in Kuta-Mandalika, Lombok, Indonesia

Pracoyo, Atas

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Pradjoko, Eko

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Pradjoko, Eko

Disaster Mitigation Plan Based Flood Event Occurred on January 30th, 2021 in Kuta-Mandalika, Lombok, Indonesia

Pradjoko, Eko

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Pratiwi, Novita Indri

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Ridhani, Citra

Exploring People's Reasons of Living in Disaster-Prone Area and Promoting Disaster Risk Reduction in Urban Planning

Saadi, Yusron

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Saidah, Humairo

The Development of the SARIMA Model for Flood Disaster Resilience

Salehudin

The Development of the SARIMA Model for Flood Disaster Resilience

Salsabila, Fera Fitri

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

Salsabila, Fera Fitri

Traffic Management Simulation to Improve Tanah Aji Intersection Road Network Performance

Saptaningtyas, Rini Srikus

The Implementation of Community-Based Agrotourism Concept as Sustainable Design in Rebakong-Kayangan Village, North Lombok Regency

Sari, Deffi Ayu Puspito

Exploring People's Reasons of Living in Disaster-Prone Area and Promoting Disaster Risk Reduction in Urban Planning

Sari, Deffi Ayu Puspito

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Sarjan, Achmad Fajar Narotama

Review of the 2018 Lombok Earthquake, Indonesia, and Its Impact from Previous Studies

Setiawan, Ery

Disaster Mitigation Plan Based Flood Event Occurred on January 30th, 2021 in Kuta-Mandalika, Lombok, Indonesia

Setiawan, Ery The Development of the SARIMA Model for Flood Disaster Resilience

Sugiman, Sugiman Material Properties and Fracture Energy of Kenaf FRP Composites

Sulistiyono, Heri

The Development of the SARIMA Model for Flood Disaster Resilience

Sulistyowati, Tri

Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) to Predict Ultimate Bearing Capacity of Footing on Granular Soil

Sulistyowati, Tri

Stability of the Meninting Diversion-Spillway Tunnel Constructed into Weak Volcanic Rock Masses Influenced by the Lombok Earthquake 2018

Sultan, Hussein Kareem

Comparative Investigations on Reactive Powder Concrete with and Without Coarse Aggregate

Suparjo

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load

Suroso, Agus

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Suteja, I Wayan The Development of the SARIMA Model for Flood Disaster Resilience

Suwandi, Arief

Passenger Satisfaction Measurement with a SERVQUAL Approach and Proposed Improvements to Non Bus Rapid Transit (BRT) Transjakarta Services Poris Plawad Route – Senayan Bundaran

Taniwiryono, Darmono

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae

Widianty, Desi

Traffic Management Simulation to Improve Tanah Aji Intersection Road Network Performance

Yasa, I Wayan

The Development of the SARIMA Model for Flood Disaster Resilience

Yussof, Mustafasanie M.

Material Properties and Fracture Energy of Kenaf FRP Composites

Zhuge, Yan

Hybrid Composite Sandwich Panels for Lightweight Housing Components: Concept and Experimental Results

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

PROCEEDINGS	ABOUT
JOURNALS	NEWS
BOOKS	CONTACT
POLICIES	SEARCH
MANAGE COOKIES/DO NOT SELL MY INFO	

Home Privacy Policy Terms of use

y in

Copyright © 2006-2023 Atlantis Press – now part of Springer Nature

Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) to Predict Ultimate Bearing Capacity of Footing on Granular Soil

Ngudiyono^(⊠) ^[D] and Tri Sulistyowati ^[D]

Department of Civil Engineering, University of Mataram, Mataram, Indonesia {ngudiyono,trisulistyowati}@unram.ac.id

Abstract. The ultimate bearing capacity is an important parameter in the footing foundation design. Several classical methods are often used to analyze the bearing capacity of a footing foundation. However, the results of this analysis always give less accurate results than the experiment. In this manuscript, an Adaptive Neuro Fuzzy Inference System (ANFIS) model was built for predicting ultimate bearing capacity of footings on granular soil. Learning process data consists of input and output. The five input parameters used for the model development in this study are width (B), depth (D_f), shape factor (L/B) of footing, unit weight (γ) and friction angle (ϕ) of soil and the output is ultimate bearing capacity (q_u). The results of the analysis showed that the ANFIS model has a good level of accuracy compared with the experiment, where the correlation coefficient (R²) for testing data was 0.98 and the Root Mean Square Error (RMSE) was 32.11 kN/m². This demonstrates that the ANFIS model developed is accurate in predicting the ultimate bearing capacity of footings on granular soil.

Keywords: footing · granular soil · ultimate bearing capacity · ANFIS

1 Introduction

Footing is one type of shallow foundation that is widely used in reinforced concrete building structures. The ultimate bearing capacity is an essential requirement for foundation design. Several classical methods are often used to analyze the bearing capacity of foundations, namely the theories of Terzaghi, Meyerhof, Vesic [1-3] and others. However, the results of this analysis always give less accurate results than the experiment. This is due to the uncertain nature of the soil and the difficulty of experimental testing in the laboratory and in situ, so it is necessary to look for alternative bearing capacity prediction methods to obtain more accurate results.

The development of soft computing, especially in the field of artificial intelligence, enables computer machines to solve problems such as those done by humans. Some artificial intelligence which has been applied in the field of civil engineering is artificial neural networks (ANN) and fuzzy logic (FL) [4]. However, the use of the ANN method has several weaknesses, namely It takes a lot of iterations in the training process to process

the neural network, so sometimes the results obtained become less accurate. While the weakness in the fuzzy logic (FL) method requires an optimization method, namely by how to try (trial and error) in determining the membership function to obtain an optimal membership function. Hence, by combining ANN and FL methods into the Adaptive Neuro Fuzzy Inference System method (ANFIS), where membership functions and rules (IF THEN) can be determined from data input automatically through the learning process, this model is expected to be able to reduce the weaknesses of each method, so that the predictions generated will be more accurate. In this study, the ANFIS method has been used for predicting the ultimate bearing capacity of a footing on granular soil.

2 Theory

2.1 Ultimate Bearing Capacity

The highest resistance to pressure applied through the foundation to the soil without causing shear failure in the soil may be considered the ultimate bearing capacity of the soil. Terzaghi was the first to introduce a theory for estimating the ultimate bearing capacity of shallow foundations. He invented the following semi-empirical equation to express the ultimate bearing capacity of a strip footing [5]:

$$q_{\rm u} = c \, \mathrm{Nc} \left(1 + 0.3 \frac{\mathrm{B}}{\mathrm{L}} \right) + \mathrm{D}_{\mathrm{f}} \, \gamma \, \mathrm{N}_{\mathrm{q}} + 0.5 \, \gamma \, \mathrm{B} \, \mathrm{N}_{\gamma} \left(1 - 0.2 \frac{\mathrm{B}}{\mathrm{L}} \right)$$
(1)

$$N_{c} = \cot g \phi \left(\frac{a^{2}}{2 \cos^{2}(45 + \phi/2)} - 1 \right)$$
(2)

$$N_{q} = \left(\frac{a^{2}}{2\cos^{2}(45 + \phi/2)} - 1\right) N_{c} tg \phi + 1$$
(3)

$$N_{\gamma} = \left(\frac{tg\,\phi}{2}\right) \left(\frac{K_{p\gamma}}{\cos^2\phi} - 1\right) \tag{4}$$

$$a = e^{\left(\frac{3}{4}\pi - \frac{\phi}{2}\right) tg\phi}$$
(5)

$$K_{p\gamma} = 3 \tan^2 \left[45^\circ + \frac{1}{2} (\phi + 33^\circ) \right]$$
 (6)

where:

 $\begin{array}{l} q_u: \text{ ultimate bearing capacity } (kN/m^2) \\ N_c, N_q, N_\gamma: \text{ factors of bearing capacity } \\ c: \text{ cohesion } (kN/m^2) \\ \varphi: \text{ friction angel } (^o) \\ \gamma: \text{ unit weight of soil } (kN/m^3) \\ K_{p\gamma}: \text{ passive earth pressure coefficient } \\ B: \text{ width of footing foundation } (m) \\ L: \text{ length of footing foundation } (m) \\ D_f: \text{ depth of footing foundation } (m) \end{array}$

2.2 Adaptive Neuro Fuzzy Inference System (ANFIS)

The Adaptive Neuro Fuzzy Inference System (ANFIS) was first introduced by Jang in 1993 [6], is a combination of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS) that uses the Takagi and Sugeno model. By using a hybrid learning procedure (a combination of the Backward-Propagation Gradient Descent method (BPGD) and Least Squares Estimator (LSE), ANFIS can build a mapping input and output that is both based on human knowledge with fuzzy rules IF THEN with the right membership function. The modeling process with ANFIS Tools in MATLAB Student Version R2014a is divided into three parts, namely the training, testing, and checking process [7]. The principle of the training process is to learn about data in order to obtain results in accordance with the targets on the data. The testing process is the process of testing the accuracy of the models that have been obtained from the training process.

3 Research Methodology

3.1 Data Collection

Data collection must have been carried out prior to modeling. The ANFIS model was created utilizing data from previous research on the ultimate bearing capacity test, including Muhs et al.; Wei β ; Muhs and Wei β ; Briaud and Gibbens; Gandhi; Golder and Eastwood [8–15], also available in reference [5]. The obtained data is then grouped into data that will be input and output. There are 97 data series [8–13] for training (Table 1) and 9 data [14, 15] for the testing process (Table 2). The following five independent variables were treated as input data: width (B), depth (D_f), shape factor (L/B) of footing, unit weight of soil (γ) and friction angle (ϕ) of soil, while the output was the ultimate bearing capacity (q_u) of footing.

3.2 Performance ANFIS Model

To find out the reliability and the level of accuracy of the ANFIS model, the error value is calculated with the correlation coefficient (R^2) and Root Mean Square Error (RMSE) in Eqs. (7) and (8):

$$R^{2} = 1 - \frac{\sqrt{\sum_{i=1}^{n} (t_{i} - y_{i})^{2}}}{\sqrt{\sum_{i=1}^{n} (t_{i} - \bar{t})^{2}}}$$
(7)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (t_i - y_i)^2}{n}}$$
 (8)

where: t_i : experiment data i y_i : ANFIS model data i \overline{t} : average experiment data n: number of data

Ref.	q _u (kN/m ²)	φ (°)	γ (kN/m ³)	L/B	D _f (m)	B (m)	No Data
[8]	270	34.9	9.85	2	0.3	0.6	1
	200	37.7	10.2	2	0	0.6	2
	570	37.7	10.2	2	0.3	0.6	3
_	860	44.8	10.85	2	0	0.6	4
_	1760	44.8	10.85	2	0.3	0.6	5
[9]	154	37.7	10.2	1	0	0.5	6
	165	37.7	10.2	1	0	0.5	7
	203	37.7	10.2	2	0	0.5	8
	195	37.7	10.2	2	0	0.5	9
	214	37.7	10.2	3	0	0.5	10
	186	37.7	10.2	3.85	0	0.52	11
	681	37.7	10.2	1	0.3	0.5	12
	542	37.7	10.2	2	0.3	0.5	13
	530	37.7	10.2	2	0.3	0.5	14
	402	37.7	10.2	3	0.3	0.5	15
	413	37.7	10.2	3.85	0.3	0.52	16
[10]	111	37	11.7	1	0	0.5	17
	132	37	11.7	1	0	0.5	18
	143	37	11.7	2	0	0.5	19
	137	37	11.7	1	0.013	0.5	20
	109	37	11.7	4	0.029	0.5	21
	187	37	11.7	4	0.127	0.5	22
	406	37	11.7	1	0.3	0.5	23
	446	37	11.7	1	0.3	0.5	24
	322	37	11.7	4	0.3	0.5	25
	565	37	11.7	2	0.5	0.5	26
	425	37	11.7	4	0.5	0.5	27
	782	44	12.41	1	0	0.5	28
[10]	797	44	12.41	4	0	0.5	29
	1940	44	12.41	1	0.3	0.5	30
-	2266	44	12.41	1	0.3	0.5	31

Table 1. Data training.

(continued)

Ref.	q _u (kN/m ²)	φ (°)	γ (kN/m ³)	L/B	D _f (m)	B (m)	No Data
	2847	44	12.41	2	0.5	0.5	32
-	2033	44	12.41	4	0.5	0.5	33
-	1492	42	12.27	4	0.49	0.5	34
	123	37	11.77	1	0	0.5	35
	134	37	11.77	2	0	0.5	36
	370	37	11.77	1	0.3	0.5	37
	464	37	11.77	2	0.5	0.5	38
	461	40	12	4	0	0.5	39
1	1140	40	12	4	0.5	0.5	40
[11]	710	39	11.97	3	0.2	1	41
1	630	40	11.93	3	0	1	42
[12]	1774	32	15.8	1	0.711	0.991	43
	1019	32	15.8	1	0.762	3.004	44
	1158	32	15.8	1	0.762	2.489	45
	1540	32	15.8	1	0.762	1.492	46
	1161	32	15.8	1	0.889	3.016	47
[13]	58.5	34	15.7	5.95	0.029	0.059	48
	70.91	34	15.7	5.95	0.058	0.059	49
	82.5	37	16.1	5.95	0.029	0.059	50
-	98.93	37	16.1	5.95	0.058	0.059	51
-	121.5	39.5	16.5	5.95	0.029	0.059	52
-	142.9	39.5	16.5	5.95	0.058	0.059	53
-	157.5	41.5	16.8	5.95	0.029	0.059	54
1	184.9	41.5	16.8	5.95	0.058	0.059	55
-	180.5	42.5	17.1	5.95	0.029	0.059	56
-	211	42.5	17.1	5.95	0.058	0.059	57
-	74.7	34	15.7	6	0.047	0.094	58
1	91.5	34	15.7	6	0.094	0.094	59
-	104.8	37	16.1	6	0.047	0.094	60
1	127.5	37	16.1	6	0.094	0.094	61
1	155.8	39.5	16.5	6	0.047	0.094	62

Table 1. (continued)

(continued)

No Data	B (m)	D _f (m)	L/B	γ (kN/m ³)	φ (°)	q _u (kN/m ²)	Ref.
63	0.094	0.094	6	16.5	39.5	185.6	
64	0.094	0.047	6	16.8	41.5	206.8	_
65	0.094	0.094	6	16.8	41.5	244.6	_
66	0.094	0.047	6	17.1	42.5	235.6	_
67	0.094	0.094	6	17.1	42.5	279.6	_
68	0.152	0.075	5.95	15.7	34	98.2	_
69	0.152	0.15	5.95	15.7	34	122.3	
70	0.152	0.075	5.95	16.1	37	143.3	_
71	0.152	0.15	5.95	16.1	37	176.4	
72	0.152	0.075	5.95	16.5	39.5	211.2	
73	0.152	0.15	5.95	16.5	39.5	254.5	
74	0.152	0.075	5.95	16.8	41.5	285.3	
75	0.152	0.15	5.95	16.8	41.5	342.5	
76	0.152	0.075	5.95	17.1	42.5	335.3	
77	0.152	0.15	5.95	17.1	42.5	400.6	
78	0.094	0.047	1	15.7	34	67.7	
79	0.094	0.094	1	15.7	34	90.5	
80	0.094	0.047	1	16.1	37	98.8	
81	0.094	0.094	1	16.1	37	131.5	
82	0.094	0.047	1	16.5	39.5	147.8	
83	0.094	0.094	1	16.5	39.5	191.6	
84	0.094	0.047	1	16.8	41.5	196.8	
85	0.094	0.094	1	16.8	41.5	253.6	
86	0.094	0.047	1	17.1	42.5	228.8	
87	0.094	0.094	1	17.1	42.5	295.6	
88	0.152	0.075	1	15.7	34	91.2	
89	0.152	0.15	1	15.7	34	124.4	
90	0.152	0.075	1	16.1	37	135.2	
91	0.152	0.15	1	16.1	37	182.4	
92	0.152	0.075	1	16.5	39.5	201.2	
93	0.152	0.15	1	16.5	39.5	264.5	
94	0.152	0.075	1	16.8	41.5	276.3	

 Table 1. (continued)

(continued)

No Data	B (m)	D _f (m)	L/B	γ (kN/m ³)	φ (°)	q _u (kN/m ²)	Ref.
95	0.152	0.15	1	16.8	41.5	361.5	
96	0.152	0.075	1	17.1	42.5	325.3	
97	0.152	0.15	1	17.1	42.5	423.6	

Table 1. (continued)

No Data	B (m)	D _f (m)	L/B	$\frac{\gamma_t}{(kN/m^3)}$	φ (°)	q _u (kN/m ²)	Ref.
1	0.08	0	1	17.2	42.8	133	[14]
2	0.15	0	1	17.2	42.8	246	
3	0.05	0	1	17.2	42.8	109	[15]
4	0.08	0	1	17.1	42.8	130	
5	0.1	0	1	17.1	42.8	152	
6	0.15	0	1	17.1	42.8	214	
7	0.2	0	1	17.1	42.8	266	
8	0.25	0	1	17.1	42.8	333	
9	0.3	0	1	17.1	42.8	404	

Table 2. Data testing.

4 Result and Discussion

4.1 Development ANFIS Model

The Adaptive Neuro Fuzzy Inference System (ANFIS) is a hybrid of ANN and FIS in which membership functions and rules IF THEN are automatically determined from data input through a learning process. Figure 1 and Fig. 2 show the FL and ANN Architect models, respectively. The ANFIS toolbox MATLAB Student Version program provides multiple membership functions for inputs: trimf, trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, and psigmf [7]. Figure 3, 4, 5, 6 and 7 demonstrate the gbellmf membership function of the FIS model for input data, which are width (B), depth (D_f), shape factor (L/B) of footing, unit weight of soil (γ) and friction angle (ϕ) of soil, and Fig. 8 shows the rule IF THEN.

(Student Version) : RS Editor Footing			
Edit View			
-	\leq		
		Forting (kugenci)	
End_jegM			Bearing, spacity
\geq	\leq		~
Angle_ristion TG Name:	Footing	FG Type:	sugero
	Foeting	FG Type	
V5 Hame:			
15 Name:	pred	Current Variable Name Type	
FG Name:	pred preber	Current Variable Name Type	

Fig. 1. FIS Model.

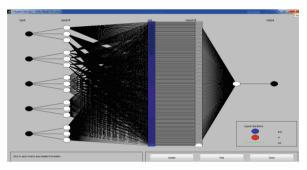


Fig. 2. ANN Architect model.

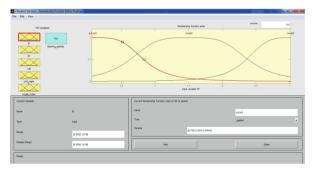
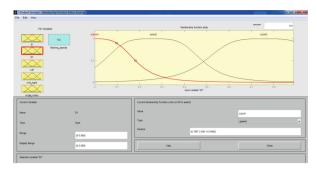
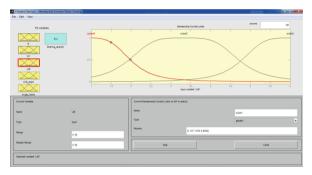
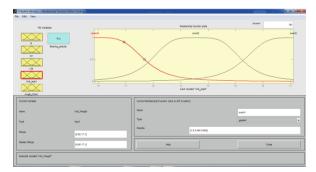



Fig. 3. Membership function width of footing (B).

Fig. 4. Membership function depth of footing (D_f) .

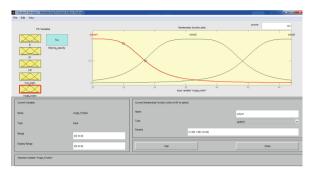

Fig. 5. Membership function shape factor of footing (L/B).

Fig. 6. Membership function unit weight of soil (γ) .

4.2 Evaluation ANFIS Model

The results of the learning process were compared to the testing data to evaluate the performance of the constructed ANFIS model, as shown in Figs. 9 and 10. The correlation coefficient (R^2) for testing data was 0.98 with RMSE of 32.11 kN/m², indicating that the ANFIS model has a good level of accuracy.

Fig. 7. Membership function friction angle of soil (ϕ) .

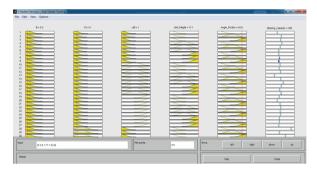


Fig. 8. Rule IF THEN ANFIS model.

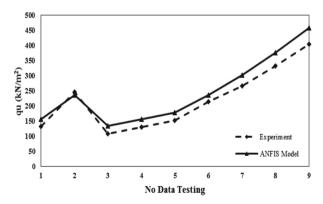


Fig. 9. Comparison of bearing capacity experiment and ANFIS model.

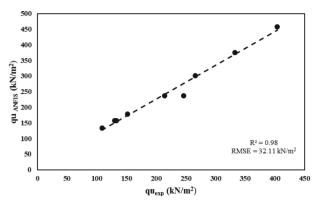


Fig. 10. Evaluation ANFIS model.

5 Conclusion

In this study, the ANFIS model was developed for predicting the ultimate bearing capacity of a footing on granular soil, where the parameter is important in the foundation design of a footing. The results of the analysis showed that the ANFIS model has a good level of accuracy compared with the experiment, where the correlation coefficient (R^2) for testing data was 0.98 with RMSE of 32.11 kN/m². This demonstrates that the ANFIS model developed is accurate in predicting the ultimate bearing capacity of footings on granular soil.

Acknowledgment. The Authors would like to thank financial support from the University of Mataram is gratefully acknowledged.

References

- 1. Terzaghi, K.: Theoretical soil mechanics. New York: John Wiley & Sons (1943).
- Meyerhof, G. G.: Some recent research on the bearing capacity of foundations. Can Geotech J, 1(1), pp. 16–20 (1963).
- Vesic AS.: Analysis of ultimate loads of shallow foundations. JSMFD, ASCE 99(1), pp. 45–73 (1973).
- Makni, M., Daoud, A., Karray, M. A.: Application of Artificial Neural Network technique in Civil Engineering, Proceedings International Conference on Control, Engineering & Information Technology (CEIT'13), Vol. 2, 56–61 (2013).
- Kalinli, A., Acar, M. C., Gündüz, Z.: New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization, Engineering Geology (2010).
- Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man, And Cybernetics, Vol. 23, No. 3 (1993).
- MATLAB, Neuro-Adaptive Learning, and ANFIS, https://www.mathworks.com/help/fuzzy/ neuro-adaptive-learning-and-anfis.html.
- Muhs, H., Elmiger, R., Weiß, K., Sohlreibung und Grenztragfähigkeit unter lotrecht und schräg belasteten Einzelfundamenten. Deutsche Forschungsgesellschaft für Bodenmechanik (DEGEBO), Berlin. HEFT 62 (1969).

- Weiß, K.: Der Einfluß der Fundamentform auf die Grenztragfähigkeit flachgegründeter Fundamente. Deutsche Forschungsgesellschaft für Bodenmechanik (DEGEBO), Berlin. HEFT 65 (1970).
- Muhs, H., Weiß, K.: Inclined load tests on shallow strip footings. Proceedings of the 8th international conference on soil mechanism and foundation engineering, Vol. II, pp. 173–179 (1973).
- Briaud, J.L., Gibbens, R.: Behaviour of five large spread footings in sand. Journal of Geotechnical and Geoenvironmental Engineering 125 (9), pp. 787–796 (1999).
- Gandhi GN.: Study of bearing capacity factors developed from laboratory experiments on shallow footings on cohesionless soils. PhD thesis, Shri G.S, Institute of Tech and Science, Indore (MP) (2003).
- Golder, H.Q.: The ultimate bearing pressure of rectangular footings. J. of the Institution of Civil Engineers 17, pp. 161–174 (1941).
- 15. Eastwood, W.: A comparison of the bearing power of footings on dry and inundated sand. Structural Engineering 29 (1), 332 (1951).
- Padmini, D, Ilamparuthi, K., Sudheer, K. P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics 35, pp. 33–46 (2008).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

