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Abstract— The demand for 3D modeling using LiDAR as the 
primary source for observing, planning, and managing urban 
areas has increased. Using LiDAR data improves the accuracy of 
the modeling so that it can be used for policy determination and 
infrastructure planning. Various kinds of research on LiDAR data 
have been carried out, one of which is indoor and outdoor LiDAR 
segmentation. For outdoor cases, LiDAR data can be obtained 
from two points of view, namely ground view and aerial view. In 
this paper, we discuss the advancements and challenges of LiDAR 
3D modeling in building segmentation that we have carried out. 
We collect LiDAR data with unmanned aerial vehicles. We use 
several algorithms such as PointNet and the Dynamic Graph 
Convolutional Neural Network variations to group structures 
from LiDAR data. The result is that the proposed method can
segment buildings, surfaces, and vegetation well. The average 
accuracy produced for the Kupang and Depok datasets reaches 
70%-80%.

Keywords—3D Modeling; LiDAR; Building Segmentation; 
PointNet; Dynamic Graph Convolutional Neural Network

I. INTRODUCTION

Geospatial data management has an essential role in 
realizing good governance in an area [1]. Urban areas that are 
well organized and follow the master plan enable government 
agencies, companies, and policymakers to implement several 
tasks such as disaster management, recording, and assessing 
urban growth efficiently and accurately [2]. In this way, local 
revenue can be maximized. One of the most significant 
contributors to regional income is land and building taxes. With 
the city's rapid development, the local revenue due to taxes 
should also be getting bigger. However, ironically, the faster the 
city's growth, the more vulnerable it will be to violations in it. 
One of the violations is a violation of spatial planning, which 
causes the object tax selling value (NJOP) not to match reality 
so that local revenue cannot be maximized. The current solution 
is only door-to-door monitoring, which is inefficient and takes 
long [3].

This problem does not only affect local revenue but can also 
damage the ecosystem. Figure 1 shows the presence of 
settlements in the green area. The consequences of this violation 
are that the buildings are not recorded, the lack of green open 
spaces to reduce the absorption of rainwater, which impacts the 
flood disaster, and the destruction of river and lake ecosystems 
that should be free from household waste. In addition, another 

critical problem is the mismatch between data from one agency 
to another due to the use of different sensors. This can make it 
challenging to get accurate information.

Based on the above problems, an accurate, updated, and 
integrated geospatial information system is needed so that every 
agency that needs it can refer to the application, the implication 
of which is to maximize regional income. The first thing that can 
be done is to use remote sensing technology, which is more 
accurate for data collection. One of them is the use of Light 
Detection and Ranging (LiDAR). LiDAR can provide 3-
dimensional imaging information, which can then be used to 
make accurate digital maps on a scale of 1: 10,000. Compared 
to existing online maps owned by the Government, this scale has 
a higher accuracy [4]–[13]. With this high accuracy, information 
on estimated land prices can be carried out until the parcel stage. 
In addition to the accuracy of the land area, LiDAR is also able 
to provide information regarding the volume of buildings 
standing on the land.

Due to the capabilities of LiDAR, the demand for 3D 
modeling using it as the primary source for observing, planning, 
and managing urban areas has increased. This model can be used 
for policy determination and infrastructure planning. A few 
years back, various kinds of research on LiDAR data have been 
carried out, such as building extraction [14], urban analysis [15], 
and tree modeling [16], [17]. Besides, the tremendous potential 
for large-scale geospatial data processing and research in image 
processing [11]. LiDAR data presents its challenges. One of 
them is for semantic segmentation tasks because of their high 
resolution [18]. This paper describes the progress and challenges 

Fig. 1. Settlement in green area can harm the ecosystems.
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we face in conducting research using lidar data for the geospatial 
information system that we have built.

The remainder of this paper is as follows. In section 2, before 
we talk about our progress, first we describe our developed 
system. After that, we discuss the progress we have made in 
semantic segmentation using outdoor LiDAR data. Section 4 
contains the performance and evaluation of our methods. The 
last section explains the challenge of SLSS and then the 
conclusion of this paper.

II. SMART LAND SURVEILLANCE SYSTEM (SLSS)
The Smart Land Surveillance System (SLSS) business 

process is shown in Figure 2. The SSLS that are built consists of 
two components, namely back-end and front-end. The process 
generally consists of data pre-processing, 3D modeling, spatial 
adjustment, etc. The front-end will display a geospatial 
information system consisting of building information, space 
utilization, spatial violations, and taxes. With this applied 
technology, it can benefit both the community and the 
Government. This technology will make it easier for the district
to adapt to economic changes that occur regularly. With the 
automation of land technology, people can find out information 
about market price estimates more quickly, carry out activities 
to buy and sell private land assets, and other personal needs such 
as the distribution of inheritance assets or the use of land assets 
as collateral start a business.

For the Government, three aspects can be utilized from this 
technology. The first is the aspect of supervision. Supervision,
in this case, is the supervision of the selling value of objects of 
land and building tax and market prices.

The second benefit is the aspect of control. With information 
about land parcels and building volumes, the Government can 
enforce building regulations more effectively. The Government 
can impose sanctions in the form of additional taxes or other 
sanctions on buildings that have a volume greater than the 
volume of buildings permitted under the Building Permit. City 
development plans can be monitored and controlled more 
effectively with this land and building information automation 
technology.

The third benefit is the aspect of regional revenue through 
taxes. Through tax sanctions imposed on violators of building 
regulations, the Government can obtain additional income from 
taxes for the local budget. With tax sanctions imposed, this is 
more assertive and broader. It is expected that the regulations 
determined by the Government can run regional development 
planning.

III. METHOD

A. Data Acquisition
Our research dataset is obtained from our partner PT. 

Pangripta Geomatika Indonesia (PGI), one of Indonesia's 
companies, actively collects LiDAR data. The data is a LiDAR 

Fig. 2. Smart Land Surveillance (SLSS) business process.
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dataset from sensing results in the Oesapa village, Kupang City, 
East Nusa Tenggara Province, Indonesia, and Margonda, Depok 
City, West Java Province, Indonesia. The area has various 
objects representing the land cover, such as vegetation, roads, 
houses, buildings, and several types of trees of different sizes. 
The dataset was collected using the LiDAR Yellowscan Mapper 
2016. This study's raw LiDAR data includes four regions with 
the LAS file format (LASer). LAS files are the binary format to 
store airborne LiDAR data in the industry standard.  

We group them into classes of building, trees, and ground 
class from various land cover components. The LiDAR Kupang 
dataset comprises a voxel point cloud with an X, Y, and Z 
coordinate value component and is embedded with the RBG 
color component. The X, Y, and Z components have a measured 
position value and RGB data range 0 - 65535. 

B. Pre-processing 
The raw LiDAR dataset is point cloud data in a LASER or 

*.las file format. The file extension format is a format generally 
used for storing point cloud data gathered from LiDAR sensors. 
However, this format is not familiarly used in computing 
processes, so that it is mandatory to convert it to a more 
straightforward format for humans to understand (readable 
format). We restore data to TXT from LAS format utilizing the 
LAS tools application, particularly the las2txt library. LAS tools 
are used in this study because it does not change the point cloud 
data's value. Then, the data that has been converted into text is 
separated into some regions. The divided areas are used to 
process -fold cross-validation. 

The dataset is already in text format; then, we divided it into 
six regions, as shown in Figure 3. We consider dividing the 
dataset into six areas because the total number of point clouds is 
about six million points, with nearly 1 million points for each 
area. The data division is helpful for training data and testing 
process with -fold cross-validation method. This method 
allows us to divide the data into  pieces of equal data subsets 
[38]. After the data is divided, the segmentation model will be 
created  times, each using a different data subset for the test 
data, with the remaining -1 data subsets as training data. With 

this method, it can be ascertained that each data subset will be 
used once as test data and will be used as training data -1 times. 
Model performance can be obtained by averaging the 
performance of each of the models. In this study, 6-fold cross-
validation was used, meaning that one dataset area was tested 
with five other datasets. 

The following dataset pre-processing is annotating each land 
cover component. The annotation process is done by dividing 
the constituent parts of the area and naming them based on their 
class name, as shown in Figure 4. The annotated components of 
the voxels include building, ground, and tree classes. 
Annotations are done using the MeshLab application. Figure 5 
presents the result of the annotation process of the dataset that 
we use as the ground truth containing building (red color), tree 
(green color), and ground (blue color). Then we carried out 
random sampling in each region. A random sample is carried out 
by dividing an area into some smaller parts (blocks). Every block 
has specific M × M × H dimensions. M represents the block's 
length and width dimensions from the X and Y axes, while H for 
the height of the area sampled in the Z coordinate. On each 
block, N points are taken that are used as training data and 
testing data. Sampling was carried out with a block size of 5 × 5 
with 256 points and 10 x 10 with 4096 points. 

C. PointNet 
PointNet is the pioneer method in 3D point clouds 

classification and segmentation. Originally the method was 
proposed to segment 3D point cloud indoor data such as a table, 
chair, wall, etc. [19]. However, along with the fast development 
of 3D segmentation, the method becomes the benchmark and 
base network for the later methods. The method takes point 
clouds as input, where a point cloud has three coordinate 
attributes (x,y,z) and color (r,g,b). The method utilizes multi-
layer perceptron (MLP) and feature transform (t-net) to generate 
global features. Then the global feature is processed by 
segmentation network. The network was later modified into 
PointNet++ [20]. PointNet++ is an enhanced architecture of 
PointNet by using hierarchical feature learning. The method can 
produce a deep architecture both for segmentation and 
classification. 

 
Fig. 3. DGCNN architecture. 
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D. Dynamic Graph Convolutional Neural Network
Dynamic Graph Convolutional Neural Network (DGCNN) 

is a point-based deep neural network architecture for 3D-point 
clouds segmentation and classification. The main idea of the 
DGCNN is to utilize edge convolution instead of regular 
convolution used in the image [21]. Figure 3 shows the 
architecture of DGCNN. The edge convolution represents the 
point clouds in a graph view. Therefore, DGCNN considers the 
relation of a point cloud and nearby point clouds as necessary
information. The method takes point clouds as input. Before
convolution, the method processes the point clouds by using a 
spatial transform mechanism. The method uses several layers of 
edge convolutions as feature extraction of the network. The 
method then uses multiple layer perceptron (MLP) as a 
classification module. The experiment on the 3D point clouds 
benchmark dataset shows that DGCNN outperformed PointNet 
and PointNet++.

IV. PERFORMANCE EVALUATION

In this section, we discuss the performance of the 3D LIDAR 
point clouds segmentation of cities Kupang and Depok,

Indonesia. The segmentation is conducted by several methods,
i.e., PointNet, DGCNN, and modified DGCNN.

A. Perfornance of 3D Lidar Segmentation of Kupang Data
In this scenario, the 3D LIDAR data is labeled into 3 class 

categories, i.e., ground, building, and vegetation. The dataset is 
divided into 6-folds, where each fold represents an area. In the 
scenario, we evaluated three models, i.e., PointNet [22], 
DGCNN, and enhanced DGCNN with Mahalanobis distance 
[23], [24]. The enhanced DGCNN replaces the distanced metrics 
of K-NN in the edge convolution from Euclidean distance into 
Mahalanobis distance. The experiment result shows that the 
PointNet method achieved 65.08% accuracy on average from 6 
areas, while DGCNN achieved better accuracy with 72.56% 
accuracy. The modified DGCNN achieves better accuracy than 
the original DGCNN and PointNet, with 75.55% accuracy on 
average. The detailed information of each area is presented in 
the table below. We can also see the visual comparison of the 
segmentation in Figure 4.

B. Performance of 3D Lidar Segmentation of Depok Data
We labeled the 3D LIDAR is labeled into 2 class categories,

i.e., building and non-building. In this scenario, the dataset is 
divided into 4-folds, where each fold represents an area. Same 
as in the previous scenario, we evaluated two models, i.e., 
DGCNN and digital surface model (DSM) [25]. In this scenario, 
we conducted building clustering to identify or separate a 
building from nearby buildings. We utilized euclidean-based 
clustering to separate each building object.

We utilized precision, recall, f-score, the intersection of 
union (IoO), and accuracy metrics in this scenario. Tables 2 and 
3 show the result of Depok point clouds segmentation by using 
DGCNN and DSM method. The tables show that in area 2, the 
DGCNN achieved good performance with 91. % Accuracy, 90% 
precision, 89% recall, 89% F-score, and 81% IoU. However, in 

TABLE 1. PERFORMANCE OF 3D LIDAR SEGMENTATION OF KUPANG 
DATA.

Dataset Accuracy (%)

PointNet DGCNN Modified 
DGCNN

Area_1 82.27 84.81 88.28

Area_2 48.49 63.41 64.77

Area_3 45.91 64.33 66.84

Area_4 71.48 64.69 72.79

Area_5 73.10 72.03 74.32

Area_6 64.26 86.08 86.30

Average 65.08 72.56 75.55

TABLE 2. PERFORMANCE DGCNN ON 3D LIDAR SEGMENTATION OF 
DEPOK DATA.

Area Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

IoU
(%)

Area_1 89 90 86 87 78

Area_2 91.5 90 89 89 81

Area_3 85.2 79 81 80 68

Area_4 84.3 79 74 76 63

Fig. 4. Visual analysis of 3D Lidar Segmentation of Kupang Data.

TABLE 3. PERFORMANCE DSM ON 3D LIDAR SEGMENTATION OF DEPOK 
DATA.

Area Accuracy
(%)

Precision
(%)

Recall
(%)

F-Score
(%)

IoU
(%)

Area_1 54.01 81 54 64 55

Area_2 60.5 87 61 71 63

Area_3 52.03 78 52 62 51

Area_4 51.06 76 51 61 48

Fig. 5. Visual analysis of 3D Lidar Segmentation of Depok Data.
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area 4, the performance of DGCNN is not good, with 84% 
accuracy, 79% precision, 74% recall, 76% f-score, and 63% IoU. 
While in area 1 and area 3, the performance of DGCNN is 
moderate between its performance in area 2 and area 4. Table 1 
also shows that overall, the DGCNN method achieved better 
performance than the DSM method. Looking to all areas, the 
DGCNN achieved better performance than DSM measure by all 
metrics, i.e., accuracy, precision, recall, f-score, and IoU. The 
visual result of the Depok Lidar segmentation is shown in figure 
5. 

V. CHALLENGE 

A. Segmentation 
We are eager to solve several challenges in the future study 

for the segmentation task in Lidar data. One of the hot challenges 
in Lidar point clouds segmentation is improving the 
segmentation performance. From the analysis we have been 
conducted, the performance of the deep learning method is still 
below 90% overall, both in 3-classes (ground, building, 
vegetation) scenario and in 2 classes (building, non-building 
scenario). Looking from the experiments log, we get the insights 
that the model needs to be improved both from its architecture 
and learning method. The model cannot achieve 100% training 
accuracy in the current condition, no matter how much learning 
epoch we have run.  

The other challenge in segmentation is classifying the 
overlapped objects, e.g., building with tree (vegetation). This 
challenge becomes vital to solving because the correct 
classifications of the point clouds affect building segmentation. 
Furthermore, it will affect the shape of a segmented building. 
While looking at the current condition, it is common to have 
trees near the buildings in Indonesia. 

B. Building instance clustering 
The other significant challenge in this study is clustering 

building instances. The main goal of the application is per-
building object segmentation. Therefore, we need to develop an 
algorithm to separate building objects and other building 
objects. This challenge is difficult to detect how many buildings 
in an area and build precise position and dimension, i.e., length, 
width, and height. And shape. The wrong building instance 
clustering will affect the wrong calculated dimensions. The 
incorrect dimension calculation will produce inaccurate building 
volumetric calculation and affect tax enforcement for the owner. 
Therefore, it is vital to have high accuracy building instance 
clustering to separate building objects from other building 
objects accurately and precisely.  

Based on our study, distance-based clustering did not 
achieve good performance since several cases produce wrong 
building separation, where two buildings are detected as one 
building. Furthermore, the Euclidean distance is not adaptive to 
the variation of distance to the other buildings. In our post-study 
analysis, density-based clustering like DBSCAN offers more 
accurate building instances clustering. However, it requires 
precise segmentation to separate building and non-building 
point clouds prior to the building instances clustering phase. 

C. Spatial Adjustment 
The resulting precision geometry from lidar will be extracted 

and then deduced with cadastral data. The data consist of land 
ownership, building ownership, and taxes sourced from 
Government. We fuse data from lidar and cadastral data to 
determine the difference in volume between building objects 
identified in the field and the values recorded in the cadastral 
data. 

We fuse two parcel maps using spatial adjustment. Spatial 
adjustment is placing or correctly positioning data spatially to its 
actual position on the earth's surface. We consider the parcel 
from lidar as a destination map because it describes the current 
conditions in an area. The cadastral map from the Government 
is referred to as the source map. This source map is spatially 
adjusted to the destination map. 

In the spatial adjustment process, we need to understand the 
characteristics of the errors that occur between the two source 
and destination maps. When the error is consistent, the direction 
& distance is a linear transformation categorized as a simple 
solution. Meanwhile, when the error is non-linear, then we need 
a control point. Currently, the control point is defined manually 
because non-linear error generates four challenges, namely: 

1. Differences in scale, different angles, and shifts in 
position, but the data dimensions (aspect ratio) are the 
same 

2. Differences in scale, angle differences, and shifts in 
position with different data dimensions (skew) 

3. Dimensional differences in all directions. 

4. Difference number of parcels between the two maps. 

The control point will be utilized in the transformation phase. 
There are several choices of transformation methods such as 
similarity transform, affine transform, projective transform, and 
rubber-sheet. It is necessary to develop an automatic control 
point determination method for the feature work to handle the 
four challenges above. Automatically can speed up the process 
and save time and costs in the Smart Land Surveillance System. 

VI. CONCLUSION 
Technology growth makes it easier for people to access 

information quickly. Information becomes a basic need that is 
needed as a basis for determining decisions in everyday life. The 
more detailed information obtained by someone, the more 
valuable the information is. The importance of the accuracy of 
this information encourages the need to add various types of 
applied technology that the public can access. One of them is 
used technology that can quickly provide information regarding 
building volume and estimated building and land values. 

Technology about land information and buildings is needed 
because the land is an important asset, especially in economic 
aspects. Land and buildings are fixed assets that can be used for 
the production process or other parties for several periods. Land 
and building assets can be used as investment assets and can 
provide income for the owner. People need to know the value of 
the land and building assets they have to market prices. 
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We successfully implement LiDAR point cloud 
segmentation using PointNet and DGCNN. Segmentation 
results show that DGCNN gives a better performance compared 
to PointNet in 3 classes point cloud. For future works, we 
improve segmentation performance using a better clustering 
approach and increase the number of classes of the segmented 
object.  
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