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ABSTRACT We propose an optimization algorithm for reducing execution time needed bymultiple pursuers
in solving a variant of the Multiple-Pursuer Multiple-Evader (MPME) problem where each evader tries to
attack an area defended by pursuers. This problem is a variant of the Multi-Agent Pursuit Evasion problem.
In our discussed problem, a group of pursuers tries to defend an area from a group of evaders’ attacks.
The main task given in this problem is how pursuers can capture or immobilize as soon as possible any
evader trying to get closer to the defended area (evaders’ target). We use Social Spider Optimization (SSO)
algorithm as the basis of our proposed method. In SSO, there are female spiders, dominant-male spiders, and
non-dominant-male spiders collaborating to catch their prey. In SSO, there are three main procedures usually
exist: calculation of fitness value, the vibrational summons of surrounding spiders, and mating procedure.
In this paper, we develop an enhanced SSO algorithm where excludes the mating procedure and propose
a practical calculation process for solving our discussed problem. SSO is one of the recent optimization
algorithms developed in the computer science field. Developing this algorithm for solving dynamic problem
like the MPME variant surely brings a novelty in the computer science research area. We test our proposed
method in a 3D simulation environment where we manifest all pursuers and evaders as drones. Based on
our experiment result, our algorithm performs better than commonly used methods for solving the MPME
problem.

INDEX TERMS 3D-simulation, drone, multiple-evader, multiple-pursuer, social-spider-optimization.

I. INTRODUCTION
A. PROBLEM OVERVIEW
Multiple-Pursuer Multiple-Evader (MPME) problem is a
variant of pathfinding problem which consists of multiple
agents from varied starting points trying to reach multiple
ending points, which are usually called as targets. In MPME,
the position of the targets can change dynamically along with
the experiment. The focus of the problem solution is not on
how a single agent finds a path to a single target; however,
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the focus lies on how the group of agents as a whole could
reach every single target as soon as possible.

There have been some researches conducted related to
MPME topic, for example [1]–[3]. Unfortunately, to the best
of our knowledge, researches on MPME problem tend to
focus on solving ‘‘cops and robbers’’ problem [4], wherein
general, evaders (robbers) tends to avoid and run away from
pursuers (cops). In our discussed problem variant, the evaders
are not trying to run away from pursuers, but they move
systematically to attack an area without concern about their
safety. They act as kamikaze troops, which are programmed
to attack an area without considering the path to come back to
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FIGURE 1. Illustration of MPME variant discussed in this research.

their origin. This topic is still being an open research issue in
computer science. Technically speaking, this MPME variant
has become a real practical problem that requires an effective
solution. One of the real-world problems manifested from
this problem that required serious attention is the Multiple
Pursuer Drones (MPD) problem in Neutralizing Attacks from
Multiple Evader Drones (MED). In this problem, as shown
in Fig 1, there is a group of evader drones trying to attack a
secured area guarded by a group of pursuer drones. Each pur-
suer and evader drone canmove automatically without human
control. MPD vs. MED is a real-world problem that needs
a comprehensive research study because attacks from MED
is bringing a concrete threat to society nowadays. As drone
technology getting more sophisticated each day, the misuse
risk of drones for attacking an area could also increase.

There are many records showings that drones have been
developed as a tool in military battles. Research about the
potential misused of drones can be seen on [5]. One of the
most dangerous usages of drones as a military tool is its usage
as a swarm drone. Swarm drone is a drone technology where
several drones can coordinate and communicate with each
other as a group in performing a specific task, for example,
destroying an area. Some examples of current swarm drone
researches can be seen on [6]–[8]. Handling such attacks by
solely using human power is not effective. Although there
are many anti-drone guns produced nowadays, they have
limitations in handling multiple drone attacks.

One of the best alternative solutions for handling attacks
from MED is by using the same technology, which is
the usage of multiple drones for defending an area. These
defender drones are usually called as Multiple Pursuer
Drones (MPD).MPDhas onemain task, which is neutralizing
attack fromMED as soon as possible to minimize the damage
caused by MED to a secured area. Although this approach
has a promising result, the main challenge of MPD usage is
how to coordinate the movement of each member of MPD so
effectively that as a group, they can neutralize attacks from
MED as soon as possible.

The term neutralizing attack in MPD vs. MED problem
refers to how MPD can prevent MED from attacking an
area. This process is usually conducted by chasing and cap-
turing or immobilizing MED before the MED can attack
the defended area. Any pursuer drone will perform some
pathfinding and obstacle avoidance maneuvers to chase an

evader drone. When the distance between a pursuer and an
evader is relatively close, the pursuer can capture the evader
by attacking it using any available weapon the pursuer owns.
The practical implementation on how a pursuer attacks an
evader depends on what technology is used by the pursuer;
for example, a pursuer can use a net weapon that, when being
shot to an evader, this net can capture the evader.

Although there are many methods proposed for solving
the MPME problem, where some of them may be mathe-
matically proven to catch all available evaders, some opti-
mization is still required because, in our discussed MPME
variant, the effect of the evaders’ attack is the most crucial
thing. In the computer science field, research about MPME is
rarely discussed in detail about how a pursuer immobilizes or
captures an evader because it depends on the technological
specification each pursuer uses. These types of researches
usually use a simplification that whenever an evader is located
near to a pursuer, which is in pursuer limited capture range,
the evader will be automatically captured. This research will
also use the same approach, so we will not discuss in detail
how the capture process is conducted.

B. REASON FOR CHOOSING PROPOSED METHOD
We propose an optimization algorithm for pursuer drones to
conduct chase and capture movement to neutralize attacks
from multiple evader drones. The basis of our proposed
method is Social Spider Optimization (SSO) algorithm. SSO
is an optimization algorithm that is introduced in 2013 [9].
SSO is a variant of the Particle Swarm Optimization (PSO)
algorithm. In SSO, there is a group of spiders that collaborate
to catch some prey on their communal web. There is no
competition among the spiders. All spiders work together as
a team to support their group survival. SSO has been used for
many problems solving approaches and performs noticeable
results.

In typical SSO, the population is divided into 3 main
categories, which are female spiders, male-dominant spiders,
and male-non-dominant spiders. Each type of spider runs a
different role for the population. In SSO, there are 3 main
possible procedures performed by each spider, which are
the calculation of fitness value, the vibrational summons of
surrounding spider, and mating procedure. This SSO charac-
teristic inspired this paper’s authors to conduct some research
about the possible enhancement of SSO in solving the MPD
vs. MED problem. We analyze that the principle of SSO,
where there are some different roles among the population,
can solve MPD vs. MED problem more efficiently because
each pursuer drones can conduct a more efficient movement.
As a consequence, we analyze that the development of this
method will bring some novelty and perform better than cur-
rently available MPME algorithms for solving the discussed
problem in this paper.

Other than SSO, some possible methods can potentially be
used as alternatives for solving our discussed problem. For
example, the principle of the artificial bee colony, as explored
in [10], or locust search algorithm as improved in [11]. Both
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methods are based on the swarm-optimization algorithm.
Although both methods might bring some promising results
for solving our discussed problem, we choose SSO as the
basis of our proposed method because we analyze that the
individuals’ variation among the population in SSO is more
suitable to be developed as the defender algorithm for our
MPD. As described earlier in our problem domain, our pur-
suer drones’ main objective is to defend an area from the
group of MPD’s attack. Thus, we need to develop our MPD
algorithm with a good defender algorithm.

To the best of our knowledge, there is still limited publica-
tion towards SSO direct usage for solving the MPME prob-
lem. According to state-of-the-art research analysis, because
SSO is a new and promising approach for solving the opti-
mization problem, enhancement about this approach toward
open research issues such as the discussed MPME variant
problem could bring a novelty aspect to computer science
research area.

II. PROBLEM FORMULATION
In our discussed problem variant, there are exist a group
of pursuer drones P containing np pursuers and a group of
evader drones E containing ne evaders. Both P and E are
moving in a 3D space S, where S ⊂ RN . We denote any
pursuer as pi, where the position of each pursuer as x ip for
i ∈

{
1, 2, . . . , np

}
. Meanwhile, we denote any evader as ej,

where the position of each evader as x je for j ∈ {1, 2, . . . , ne}.
In general, we use the term agent to describe any drone,
whether it is a pursuer or an evader. Thus, the total number of
agents in our environment denotes as n = np + ne.
Every evader ej has a goal to attack a global target that is

guarded by a group of pursuers. We denote the global target
as G, where its position is denoted as xG. Every evader’s
attack produces a damageD at a time tc towardsG if and only
if the position x je is in the damage radius of G. We denote
the damage radius as rdamage. Every evader ej that is inside
rdamage radius in time tc produces damage to G according to
the evader’s distance from xG. We use evader’s distance as the
divisor in (1) because the closer an evader from G, the higher
the risk it can produce from its attack.Meanwhile, if an evader
is outside rdamage radius in time tc, then ej produces 0 damage
to G in time tc. Equation (1) resumes the damage function
produced by any evader ej at a time tc.

D(ej)tc


100∥∥∥x je− xG‖

2 , if
∥∥∥x je− xG‖ ≤ rdamage

0, if
∥∥∥x je− xG‖ > rdamage

(1)

onsider
_

E as a subset of evaders group E which having
positions inside damage radius rdamage of global target G.

In another word,
_

E ⊂ E and if ej ∈
_

E then
∥∥∥x je− xG‖ ≤

rdamage. By using this term, if
∣∣∣_E∣∣∣ denotes the number of

_

E
member, then total damage that is given to global target G by
a group of evaders at a time tc is shown by (2). Please notice

that (2) can also be calculated as (3) because according to (1),
the damage D(ej)tc will be 0 if

∥∥∥x je− xG‖ > rdamage. In gen-
eral, the damage accumulation of G during the execution time
(Damageaccum) is a sum up result of total damage at each time
t as shown in (4). In (4), tend represents the last time when the
experiment is held.

Total_Damagetc =
∑∣∣_E∣∣

j=1
D(ej)tc , where ej ∈

_

E (2)

Total_Damagetc =
∑ne

j=1
D(ej)tc , where ej ∈ E (3)

Damageaccum =
∑tend

t=1
Total_Damaget (4)

The main objective of evaders E is to create as many
damages as possible toG. In other words, E tries to maximize
the amount of Damageaccum. Meanwhile, the main objective
of pursuers P is to prevent attacks from E towards G. P
tries to minimize Damageaccum as low as possible. The lower
Damageaccum produced from P vs. E interaction, the better
P performance is. Thus, in general, the best performance
could be produced in this MPME problem variant is gained
whenDamageaccum is 0. P tries to minimizeDamageaccum by
capturing all evaders E as fast as possible to prevent E from
conducting attack to G. In general, P handles E by chasing
them, which means moving to get closer to E , then if ej is
located inside capture radius rcapture of pi, then ej is captured
by pi. If a pursuer pi captures an evader ej at a time tc, then ej
remains captured for all time t> tc. As shown in (5), an evader
ej is captured by a pursuer pi at a time tc if the distance
between them is less than capture radius rcapture of a pursuer
pi. When an evader has been captured, it is immobilized and
cannot create any damage to G.

if
∥∥∥x ip − x je∥∥∥ ≤ rcapture then ej is captured by pi (5)

Another parameter that can be used as performance evalu-
ation parameter beside Damageaccum is execution time. Exe-
cution time refers to the amount of tend needed for pursuers
P to capture all evaders E . As shown in (4), tend represents
the last time for the experiment to be conducted. Experimen-
tally speaking, tend is assigned as time t when all evaders E
have been captured. In the practical world, tend cannot be
measured because information about how many evaders E
left is unknown. However, in an experimental environment,
the number of evaders E is always known. Thus, tend can be
used as a supporting parameter to measure the performance of
the proposed method in solving this MPME problem variant.
The less the value of tend has, the better the performance
of the algorithm in solving the discussed problem is. Please
notice that although there are two parameters used as the
performance measurement indicator, the Damageaccum is the
main parameter used as the performance indicator because it
represents the main objective of the proposed method, which
is solving MPME problem variant in preventing attacks from
a group of evaders E .
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III. RESEARCH SCOPE
We develop a coordination algorithm for improving the per-
formance ofmultiple pursuersP in capturingmultiple evaders
E in theMultiple-Pursuer Multiple-Evader (MPME) problem
variant. The problem variant we discussed in this paper is
every evader in E does not try to run away from P. However,
a group of evaders E tries to attack a specific area (target)
guarded by P. E act as a kamikaze troop where they do not
consider the way back home maneuver. What they do care is
conducting attack as much as possible to its target.

This work presents a theoretical work instead of a real-
world application. However, the result of this work can be
used as a fundamental-guidance in developing methods to
overcome the related real-world problems. Because this work
scope is in theoretical work, some complex factors exist-
ing in the real-world might be ignored. We do not discuss
errors that can occur in pursuer sensors or any environmental
challenges that may be faced by pursuers in a real-world
scenario. We also do not explain in details about what kind of
sensors needed by pursuers to chase and capture an evader,
or technology needed by pursuers to communicate with each
other, or even weapon used by evaders to attack their global
target G. There are many kinds of research explaining tech-
nology or algorithm nowadays that drones obtain to track or
follow an object, or even conducting some obstacle avoid-
ance algorithm, for example [12]–[16]. The communication
technology among autonomous drones is also well developed
nowadays, as shown in [17], [18]. Thus, we will not discuss
in detail about the above aspects. What we focus on is devel-
oping a coordination algorithm among pursuers P to capture
multiple evaders E as effectively as possible.
Please notice that there have been some studies related to

the MPME problem focusing on the theoretical approach,
for example, [19]–[21]. In theoretical discussion, the prac-
tical implementation on how a pursuer capture an evader is
rarely explained in details because it depends on technology
implementation that a pursuer own, for example, a pursuer
can shoot a net weapon to an evader so accurately that the
evader is immobilized then drop down to the ground. See [22]
for more details info about the nowadays anti-drone system.
In theoretical discussion, there is no limit to the amount of
weapon ammunition that an agent has. So, every pursuer can
capture an unlimited number of evaders if the evader meets
(5). On another side, any evader can conduct an unlimited
attack on global target G as long as it has not been captured.

Agents in the MPME problem can be manifested as many
possible entities, for example, ground robots or unmanned
vehicles. In this research, we use drones as our agent mani-
festation. We set up a 3D simulation environment where each
agent can move freely by conducting possible movements
of a drone in a real-world environment. The reason why we
choose drone as our agent manifestation is that a drone can
move freely in any direction in a 3D-environment; besides,
it can stay still in a position without having to move like a
standard fixed-wing aerial vehicle that should always move
forward to gain lifting force. This drone characteristic makes

the simulation more dynamics, and experiment results could
be more comprehensive. Another main reason for this is
because, in real-world circumstances, drones swarm have
been used as a real weapon to attack an area. Thus, we hope
by using drones as our agent manifestation, the result of this
experiment in the future can be used as a foundation to solve
real-world MPD vs. MED problem.

Because we test our proposed method in a simulation
environment, we use the term iteration to refer time t needed
during our experiment. One iteration is defined as a dura-
tion needed by each agent to change its position from one
point to another point. In our experiment, each agent has the
same maximum speed, so, in each iteration, every agent can
move with the same distance. If there are n agents during
an experiment, then in one iteration, there can be n total
movement performed by all agents where each agent only
performs 1 movement. We use the term iteration to measure
tend because iteration is a parameter that can be measured
objectively without relying on hardware specification used to
run the simulation. If we use clock time duration to measure
tend, the result can be varied depending on simulator hardware
specification. Thus, in this experiment, time t is measured as
the number of iterations.

IV. PAPER CONTRIBUTION
A. SSO BASIC CONCEPT
Social Spider Optimization (SSO) is an optimization algo-
rithm that is inspired by the behavior of spiders in nature.
It was introduced in 2013 by [9]. In nature, there are 2 types
of spider groups, namely solitary spider groups and spider
groups that live in a colony. In the SSO algorithm, the basic
inspiration for this algorithm is the behavior of spiders who
live in a colony. The paradigm used in SSO is the coordination
mechanism carried out by a group of spiders who work
together in finding prey andmates. In SSO, the search space is
called a communal web. Each spider interacts with each other
through the communal web. Every spider works together as
a team to capture preys on their communal web. There is no
competition among the spiders.

Each spider in SSO can communicate with other spiders
by vibrating the communal web. From the results of these
vibrations, the spider population can determine the direction
of motion of the group, whether to approach the source of
vibration or away from the source of vibration. This algorithm
is a variation of Particle SwarmOptimization (PSO). At SSO,
there is a spider population consisting of a group of individ-
uals of different sexes. Each sex has a different tendency of
movement characteristics.

The basic principle of SSO is similar to PSO, where each
individual can communicate with other individuals so that the
entire population can obtain optimum results efficiently. The
main characteristic of individuals in SSO, in general, is that
the individuals are divided into a female (F) and male types.
The male group was divided into dominant male (D) and
non-dominant male (ND). Each F can call individual D to
come closer toward F. Meanwhile; every individual D tends
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to be near F spiders to perform the mating procedure. Like the
behavior in nature, ND groups tend to gather in areas where
there are no individual D. The proportion of D and ND in a
population is around 50%: 50%.

In the SSO concept, each individual has a fitness
value (FV) that is informed to the entire population through
the communal web. FV is the value of the effectiveness of an
individual solution. In the computer world, FV can be calcu-
lated based on how close an individual is to a target/solution.
One of the interesting things in SSO is that there is a unique
paradigm of mating between individual F and individual
D. Two individuals can mate and produce a new individual
with FV resulting from a combination of individual F and
individualD. If the FV results from new individuals are better
than with the weakest individual’s FV in the population,
the weakest individual will be destroyed and replaced with a
new individual. However, if a new individual does not have a
better FV than the weakest individual’s FV in the population,
then this new individual will not survive (disappear).

In nature, the aim of one individual spider to call another
individual is to mate or together attack food target (prey).
A female spider can attract a dominant male spider based
on the female spider’s FV condition and its distance towards
the male spider. In computer science, the aim of calling
other individuals is to produce new individuals (alternative
solutions) or to explore a possible solution jointly. Because
individual F can call individual D, and each male tends to
keep his distance to each other, then the possibility of trapped
populations in local optimum solutions can be minimized.
If there is no vibration of the call made by any individual,
then each individual will be silent or move freely according
to their instincts. The instinct of each individual is look-
ing for food, where in terms of computer science, food is
a parable for the target/solution. When an individual gets
closer to a food source, then the individual’s FV value gets
higher.

The complexity of SSO arises when, in one moment, there
is a group of individuals who vibrate the communal web to
call other individuals. In SSO, the number of individual F is
far more than individual D, where an individual D can come
and mate more than 1 individual F. When there is more than
1 call in the population, the population movement algorithm
needs to be designed so systematically that any wrong area
neglection can be prevented. In the concept of SSO, each ND
can change to D, and vice versa depending on the condition
of each’s FV.

SSO characteristics that can minimize the occurrence of
local optimum solutions makes this algorithm is often used
to solve various problems such as Artificial Neural Net-
work Training [23], [24], Support-Vector-Machine Parameter
Tuning [25], [26], Controller Design [27]–[29], Frequency
Controller [30], Image Processing [31], [32], Distributed
Renewable Energy [33], Congestion Management [34],
or Anti-Islanding Protection [35]. [36] shows several inter-
national publications that have been indexed by JCR (Journal
Citation Report) from 2014 to 2017. From [36], it is shown

that SSO is an algorithm that can be used to solve various
problems.

B. NOVELTY AND CONTRIBUTION
In general, there are 3 main procedures usually conducted in
SSO: calculation of fitness value, the vibrational summons of
surrounding spiders, and mating procedure. Detail variety of
each process depends on the type of problem being solved.
In our proposed method, we enhance the basic concept of
SSO as introduced on [9] and develop some novel setup
and calculation to optimize SSO performance in solving the
MPME problem variant discussed in this paper. The details
about the enhancement will be explained in the next section.
We try to emphasize the enhancement in each subsection.

Since it was first published, SSO has been used by various
domains. Although SSO has now been used as an algorithm
to solve a variety of problems, unfortunately, there is no
comprehensive research related to the use of SSO in solving
the MPME problem variant as the issue raised in this study.
The MPME problem variant discussed in this study is also
still being an open research issue. The enhancement of SSO
to handle the topic of problems in this study certainly has its
novelty aspect because a relatively new method such as SSO
is developed to deal with an open research issue.

According to researches conducted using the SSO
approach, there are some tuning or modifications required to
produce an optimal result of the SSO algorithm for solving a
specific problem. That is why although the principle of SSO is
promising for solving our discussed problem, we still propose
some enhancement method. In the following section, we will
discuss in detail what parts of SSOwe enhance and the reason
behind the enhancement.

This research contributes an alternative solution to the open
problem of counteracting attacks from a group of evader
drones. To the best of our knowledge, there have not been
any international journal publications that discuss in detail
the strategies to deter evader drones’ attacks against a region.
Many MPME problem solution tends to deal with the ‘‘cops
and robbers’’ problem. Our research to offer a new method
dealing with discussed MPME problem variant surely bring
novelty and contribution to the computer science field.

V. PROPOSED METHOD
Before we jump to the mathematical issue of the proposed
method, we would like to highlight that the proposed method
we explain here is a coordination algorithm among a group
of pursuer drones P to prevent attack from a group of
evader drones E toward a global target G. Thus, when we
explain further about the SSO as our basic method, it means
that every spider in the SSO refers to one single pursuer
drone pi. We manage to explain our proposed method with
the same structure of processes needed in the basic SSO
approach. Please notice that in each following subsection,
we will emphasize the enhancement we do to improve the
SSO performance in dealing with our discussedMPME prob-
lem variant.
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Although in the SSO approach, there are 3 variants of
spiders: female, dominant-male, and non-dominant-male; the
implementation of each variant in our pursuer drones only
affects their movement behavior. Any specification of equip-
ment, speed, or capability of each our pursuer drone is set
to be the same. We do not differentiate purser drones’ per-
formance capability. We only differentiate their movement
behavior.

A. SSO POPULATION INITIALIZATION
In the conventional SSO, the population of spider colonies
is dominated by female spiders, which account for 65-90%
of the population. For this reason, at the stage of population
initialization, it is necessary to determine the number of Nf
that indicates the number of female spiders and theNm, which
indicates the number of male spiders. The total number of
spiders in the population is N . In the initialization stage,
a randomization function needs to be used so that the SSO
can approach the natural characteristics of spider colonies in
the wild.

Nf = floor[random (0.65, 0.90) x N ] (6)

Nm = N − Nf (7)

Equation (6) shows the basic SSO initialization for deter-
mining the number of female individuals in a population.
In (6), it appears that there is a random function that will
produce a decimal number between 0.65 to 0.9, which will
then be multiplied by the total number of population (N ).
The floor function in (6) is used to round down the result if
the result of multiplying the percentage of females and the
number of individuals in the population is not an integer.
Next, in (7), the number of male individuals is calculated
by reducing the entire population by the number of female
spiders.

To formalized the notation, the spider population in an
SSO is symbolized as S (spider), with a total of N individ-
uals, where the S population consists of two sets, namely
the female group F (female) and the male group M (male).
To facilitate indexing, if individuals in S = {s1, s2,...,
sN}, individuals in F = {f1, f2,..., fNf }, and individuals in
M = {m1, m2, ..., mNm}, then the first Nf individual in
S is female spiders and individuals in the index greater than
Nf in S are male spiders. Simply put S = F ∪ M, where
S = {s1 = f1, s2 = f2,..., sNf = fNf , sNf+1 = m1,
sNf+2 = m2,..., sN = mNm}.

The proposed enhancement that we do in this SSO aspect
is determining the fixed percentage of female numbers in the
population. In the basic SSO, as shown in (6), the percentage
of Nf compared to N can be between 65% to 90%. The role
of F in population is to attract dominant male spiders to
move toward a female spider. Thus, if the percentage of F
is low, then there will be a lot of dominant-male (D) spiders
in the population that should be summoned by F. If this
happens, then spider population tends to be gathered in some
narrow spot around F. For the discussed MPME variant, this

situation could make many areas unguarded, thus it could
bring high damage potential for global target G. Meanwhile,
if the proportion of F is high, there will be few D spiders
that can be summoned when F is calling. If this happens,
then SSO coordination will fall into the conventional MPME
algorithm because the essential part of the SSO algorithm is
the summoning process. Understanding the tradeoff caused
by Nf, we come to an analysis that the proper proportion ofNf
should be 85%. We change the basic SSO equation, as shown
in (6) into (8). We have done some preliminary experiments
showing that the best performance of SSO for solving the
discussed MPME problem variant is produced when the pro-
portion of Nf compared to total population number N is 85%.
As mentioned in the basic SSO concept, male spiders are

classified into two categories: dominant and non-dominant.
A male spider mi is categorized as a dominant spider if the
weight value of the Wi spider is greater than the median
weight value of the overall male spiders. If not, then male
spider mi is categorized as a non-dominant male. The formu-
lation of the decision whether a male spider mi is a dominant
male spider or not can be seen in (9) and (10). Please notice
that because the weight Wi of a male spider is related to
its FV, and FV value can dynamically change according to
the surrounding evaders’ position, then the median value of
male spiders can so dynamically change too that the category
of each male spider can dynamically change along with the
experiment.

Nf = floor[0.85xN ] (8)

mi ∈ D, if FV (mi) > F̃V (M) (9)

mi ∈ ND, if FV (mi) ≤ F̃V (M) (10)

After the number of females in a population is determined,
the next step is to place existing individuals in the search area
(communal web) so that the initial position of individuals can
be spread evenly and proportionally. Because F spiders have
a role as spiders that can summon other D spiders, we set
the F spiders’ initial position in the outermost perimeter of
the pursuer group. Meanwhile, we locate the male spiders
in the inner perimeter. Because at the initial position, there
should no evaders detected, so the median of FV for all males
spiders should be 0. Thus there is no dominant male at the
beginning of the initialization state. Fig 2 shows an initial
position example when there are 25 spiders in the population.
Please notice that Fig 2 is just a 2D simplification of the 3D
simulation environment used in our experiment.

In Fig 2, the center of image represents the global target
G. According to (8) and (7), because N is 25, then Nf is 21,
and Nm is 4. In Fig 2, the pink number represents female
spiders F, while the blue number represents non-dominant
male spider ND. In this paper, D is represented by using a
green color. However, because there is no dominant spider
in the initialization state, there is no green number in Fig 2.
The initial position might be slightly varied according to the
number of SSO population. However, in general, we put the
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FIGURE 2. Initial spiders position example in the proposed method.

male spiders in the inner perimeter; while we put the female
spiders in the outer perimeter.

B. SSO INDIVIDUAL WEIGHTING
Each individual in SSO has a fitness value (FV), which indi-
cates the quality of the solution obtained by an individual at a
particular time. The FV value in SSO is very dependent on the
domain of the problem being handled, for example, the indi-
vidual’s FV in a route searching problem is better when an
individual gets closer to the intended target. We use the term
weight(W) as an FV normalization value for each spider. The
weight term is also used in the basic SSO algorithm. The FV
normalization process to produce weight is shown in (11).
Each weightsWi is notated in a decimal number between 0 to
1. In (11), FV(si) shows the fitness value of a spider si from
population S. Meanwhile, bests and worsts show the best and
worst FV values of spiders in population S. As amathematical
equation, the bests and worsts can be notated through (12).
In SSO, the greater the Wi indicates the better the quality of
the solution owned by an individual si.
We do not modify the calculation process of each spider’s

weight. The equation (11) and (12) are equations used in the
basic SSO method. What we do develop is the calculation
method to measure FV of a spider, as will be discussed in
the following passage. In the case of capturing an evader
drone, a pursuer drone has a higher weight when it is closer
to an evader. Therefore, the FV value will be higher when
the distance between a pursuer and an evader is getting
smaller. In 3D space, the distance between two objects (ds)
is the resultant vector of the distance between the x-axis (dx),
y-axis (dy), and z-axis (dz). The direction of the three axes
in this research can be seen in Fig 3. In Fig 4, you can see
an illustration of how to measure ds of a purple circle object
from the center of the axis.

Wi =
FV (si)− worsts
bests − worsts

, i ∈ {1, 2, . . . ,N } (11)

bests = max
k∈{1,2,...,N }

(FV (sk)) |worsts= min
k∈{1,2,...,N }

(FV (sk))

(12)

From Fig 4, if the center of the axis is the location of a
spider, then the distance of an evader from the spider (ds)
can be calculated using the resultant vector formula in (13).

FIGURE 3. Axis orientation in 3D search space.

FIGURE 4. Visualization of distance in 3D space.

Because the weight value of a spider is inversely proportional
to the distance between the spider and the target, then to
calculate the FV of an individual, we propose the formula
stated in (14) to be used. In (14), the FV value is calculated
as the inverse distance between individuals and targets. This
formula is quite simple and represents the characteristics of
the problem being studied.

ds2 = dx2 + dy2 + dz2 (13)

FV (si) =
1

ds(si, target)
(14)

FV (si) =
∑k

t=1
(

1

ds
(
si, target t

) ) (15)

If a spider detects more than 1 target around it, then,
of course, the FV should also increase because this situation
indicates that there are many preys around a spider. Thus if
there are k targets around the individual si, then we propose
total FV (si) in (14) to be modified into (15). By using (15),
the calculation formula FV (si) can be more proportionate to
the number of targets faced by an individual si.

C. SSO VIBRATION MODELLING
As explained earlier, each individual in SSO can commu-
nicate using vibrations propagated through the communal
web. In SSO, there are 3 types of vibrations that affect the
movements of an individual si, which are:
1) Vibration from the closest individual with a weight

greater than si (Vibci: vibration that is closest to si).
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This vibration is felt by si and is produced by another
individual sc, no matter whether male or female, where
sc is the closest individual to the si who has weight
Wc >Wi.

2) Vibration from the individual with the best FV (Vibbi:
vibration from the best spider). This vibration is felt
by si and is produced by another individual, no matter
whether male or female, where Wb = bests.

3) Vibration from the closest female (Vibfi: vibration
from the closest female to si). This vibration is only
produced by female spiders to attract male spiders to
approach themselves. This vibration only affects the
male spider. This vibration is felt by si and is produced
by female spider sf, who is the closest female to si.

Like the characteristics of the intensity of the waves,
the farther the center of vibration from an individual,
the smaller the vibration will be felt. In SSO, to reduce the
vibration felt by the individual si due to the vibration of the
individual sj, the weight of the sj will be reduced by using
some division scaling factor powered by Squared Straight
Line Distance (SSLD) between the position of si and sj. Equa-
tion (16) shows the SSLD formula between two individual si
and sj. Please notice that in (16), each individual is placed in
a 3D space of communal web with coordinates in the form
of (x, y, z) axes, where respectively si.x, si.y, si.z denotes the
coordinate points of si on the x, y, and z axis.

SSLDi,j=
∥∥si−sj∥∥2
=

(
si.x−sj.x

)2
+

(
si.y−sj.y

)2
+

(
si.z−sj.z

)2
(16)

In SSO, for the same distance, the greater the vibration
value produced by sj towards si, the greater the impact of the
vibration for the si. The formulas of vibrations found in basic
SSO can be seen in (17), (18), (19), which respectively formu-
late various vibrations that have been previously described.
Please notice that in (17), (18), (19), for the same magnitude
of vibration value, the farther the distance of sj vibration
sources from an individual si, the smaller the vibrations felt
by si due to the eSSLDi,j scaling factor.

Vibci =
Wc

eSSLDi,c
(17)

Vibbi =
Wb

eSSLDi,b
(18)

Vibfi =
Wf

eSSLDi,f
(19)

Although the eSSLDi,j scaling factor seems proportional in
reducing the vibrational effect from an individual, we analyze
that the scaling factor tends to make the vibrational factor
become 0 even when the distance between a spider toward a
vibration source is near. If this happens, then the vibrational
factor seems useless. Thus, to optimize this factor for utilizing
the SSO algorithm in solving the discussed MPME problem,
we propose some different scaling factors to enhance the
computational resource to measure vibrational factor impact
from individuals. We remove the use of exponential factor e.

FIGURE 5. Various vibrations that affect individual movement in SSO.

We propose (20), (21), and (22), respectively, to enhance
the (17), (18), (19). The reason behind this decision is because
we analyze that the use of power function towards e brings
unnecessary computational resources. We consider that using
SSLD itself as a scaling factor is quiet represents the propor-
tionality of distance factor towards the vibrational effect of
a spider. In general, we propose the vibrational factor of a
spider sj towards spider si as a division of weight sj (Wj) by
the SSLD between the two spiders.

Vibci =
Wc

SSLDi,c
(20)

Vibbi =
Wb

SSLDi,b
(21)

Vibfi =
Wf

SSLDi,f
(22)

Fig 5 shows an illustration of various vibrations that pos-
sibly exist in SSO. In Fig 5, please focus the observation on
the black spider si. In Fig 5, the black spider indicates the sex
of the spider does not need to be considered because it does
not affect the computation of SSO algorithm. The spider has
a Wi weight of 0.55. To find Vibci felt by si, it is necessary
to determine in advance the closest spider from si that has a
weight greater than the weight of the si. Notice in Fig 5 that
the closest spider to si is ND1. However, because WND1 is
no greater than Wi, the vibration of ND1 is not considered
by si as Vibc. Thus, we move to the next closest spider from
si, i.e. sc, where Wc is 0.6, which means it is greater than Wi.
Because sc meets the criteria, Vibci for the case in Fig 5 comes
from sc regardless of the sex of sc.
The next vibration that affects si is Vibbi. Vibbi is produced

by individuals with the largest W weights in the population.
Based on Fig 5, it is clear that the individual with the greatest
weight is sb, with a Wb of 1. Therefore, regardless of sex sb,
Vibbi vibration for the case of Fig 5 is produced by sb. The
last vibration that affects si is Vibfi vibration coming from
the nearest female spider. Based on Fig 5, it is clear that the
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FIGURE 6. Various regions of a pursuer drone.

closest female spider to si is f3. Therefore, the Vibfi vibration
felt by si in Fig 5 is produced by f3.

D. SSO INDIVIDUAL MOVEMENT DECISION
In order not to be easily trapped in the local optimum solu-
tion, every individual in the SSO has different movement
characteristics depending on the sex of a spider. In general
SSO, female spiders are not affected by Vibf. The female
spider fi is only affected by the vibrations of Vibci and Vibbi.
On another hand, dominant male spiders are affected only
by Vibf; while non-dominant male spiders are not affected
by any vibrational factor. SSO individual movement is the
most crucial factor in SSO algorithm performance. The main
enhancement we propose lies in this aspect. For each spider
sex in SSO,we propose some enhancement to theirmovement
algorithm.

As a common assumption used on MPME theoretical
research, each pursuer can detect the precise position (coordi-
nate) of evaders when the evaders are in the pursuer’s detec-
tion range. As shown in Fig 6, each pursuer has 3 different
ranges around its location. Assume the center of Fig 6 rep-
resents the position of a pursuer. R2 represents the detection
range of a pursuer. Any evaders’ that are located inside this
region can be accurately detected. Meanwhile, R1 refers to
the capture range of a pursuer. It is similar to rcapture in (5).
The pursuer will automatically capture every evader located
inside the R1 region. The last region of a pursuer is R3. R3
represents the limit of a pursuer’s detection range. A pursuer
cannot detect any evader in the R3 region because the distance
is too far.We also use this common approach for our proposed
method.

1) FEMALE SPIDER MOVEMENT
In the basic SSO algorithm, female spiders move according
to (23), where f ki denotes the position of female spider fi in
kth iteration, while α, β, and δ are random numbers between
(0,1). In (23), besides Vibbi and Vibci, a female spider move-
ment is affected by some internal factors. First is the tendency
towards stimulus factors. This factor determines whether a
female spider tends tomove closer to a stimulus, or shemoves
away from a stimulus. This factor is denoted as different
‘‘+’’ (plus) and ‘‘-’’ (minus) signs in (23). In the basic SSO,
this factor is determined randomly with some probability

factor PF. The basic SSO algorithm will generate a random
value between 0 and 1; then, if the value is lower than PF,
the female spider is designed to move towards a stimulus.
Otherwise, the female spider moves away from a stimulus.
This factor is designed to imitate the hormonal-like factor of
a female spider. The second factor is designed to imitate the
instinct-like factor of a female spider. This factor is notated as
a random factor in (23). According to (23), the female spider
movement is affected by some random factor. In the basic
SSO algorithm, this random factor is designed to prevent a
female spider to be trapped in some local optimum solution.

We propose some enhancement to the basic SSO female
spider movement in (23). We analyze that the hormonal-like
factor seems tomake the performance of female spidersmight
be lower because female spiders are sometimes allowed to
move away from a stimulus.Whereas in the discussedMPME
problem variant, when vibration from a spider is high, it indi-
cates that there are many evaders around the spider. Thus,
other spiders should move toward the vibration source to
capture more evaders. By using this consideration, in our
proposed method, we drop the use of the hormonal-like factor
and set each spider should move toward stimuli she feels.

f k+1i

=



f ki + α.Vibci.
(
Sc − f ki

)
+ β.Vibbi.

(
Sb − f ki

)
+δ.random(−0.5, 0.5)

with probability PF
f ki − α.Vibci.

(
Sc − f ki

)
− β.Vibbi.

(
Sb − f ki

)
+δ.random(−0.5, 0.5)

with probability (1− PF)

(23)

The next enhancement we propose in SSO female spider
movement is by replacing the random instinct-like factor of
a female spider with a calculated external factor based on
detected preys’ location. We introduce the term of UnVecprey
as a parameter to be considered by a female spider when
making amove. UnVecprey represents the unit vector towards
a free-and-nearest prey from a spider. It is related to the posi-
tion of the closest target around an individual. We propose
a mechanism where an individual tends to get closer to its
nearest target. It is similar to spider’s nature, which is more
likely to move toward the nearest food or prey trapped in the
communal web.

To prevent the wasteful resource allocation of available
spiders, we manage to avoid sieging maneuvers conducted by
the spiders. We tend to prevent different spiders from being
attracted by the sameUnVecprey source. Thus, we use the term
ecl(i) as the evader producing UnVecprey to a spider si. We use
ecl to notate the closest evader that is not being chased by
any other pursuer. Because each pursuer can know the exact
position of an evader (when the evader is inside R2 region
of Fig 6), every pursuer can communicate with each other to
mark which evader is being chased by which pursuer. After
determining the ecl of a spider si, we calculate UnVecprey by
using (24). UnVecprey is calculated as the vector difference
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between the location of a spider (si) and its ecl location.

UnVecprey =
−−→ecl(i) −

−→si∥∥−−→ecl(i) −−→si ∥∥ (24)

The last factor we enhance for female spider movement is
the values of α, β, and δ in (23). In basic SSO, these values
are set to be a random number between (0,1). We analyze that
making these values random creates inconsistent behavior
of female spiders’ movement. Although setting these values
as random numbers might bring female spiders not being
trapped in local optimum, we consider this value should be
some constant numbers because it will make female spider
movement performance more stable. However, because we
remove the use of random instinct factor, we do not use any
δ variable. As a summary of our enhanced female spider
movement, we formulate our proposed enhancement method
as (25) to replace (23), where the values of α and β are
constant and will be mentioned in the experiment results
section.

Please notice that we use a different paradigm to define
the female spiders’ movement formula. Instead of defining
the exact position of a spider in the next iteration, we define
the next position of a spider as a vector resultant. Every spider
si has a speed vi. Thus, the position of a female spider in
the next iteration is determined by the unit vector direction
it wants to conduct multiplied by the speed it has. In this
research, we use ‘‘<>’’ notation to inform the reader that we
need to calculate the unit vector of the vector resultant inside
the symbol.

f k+1i =


f ki + UnVecprey ∗ vi,
if ecl(i) 6= ∅

f ki + 〈[α.Vibci.〈Sc−f
k
i 〉+β.Vibbi〈Sb−f

k
i 〉]〉.vi,

if ecl(i) = ∅
(25)

2) DOMINANT MALE SPIDER MOVEMENT
In the basic SSO algorithm, a Dominant-Male (D) spider
mi’s movement is affected only by Vibfi as shown in (26),
where α and δ are random numbers between (0, 1). In (26),
mki represents the position of dominant male spider mi in
the kth iteration. In the basic SSO, a dominant-male spider
tends to come closer to a female spider. To optimize the SSO
performance, we replace this characteristic by managing a
dominant male spider mi to come to the female spider with
the highest vibrational effect to mi. We call this female spider
as f besti . Please notice that f besti might be different from the
best spider sb because in calculating vibration, the distance
between two spiders holds a big impact.

Similar to female spiders’ characteristics, in basic SSO,
D spiders’ movement is also affected by some random
instinct-like factor. We consider this D random instinct-like
factor as an unnecessary factor. So, with a similar analysis for
the enhancement of female spiders’ movement, we replace
the instinct-like factor with UnVecprey factor, as shown

in (24). As a result, we change the basic SSO dominant male
formula (26) to (27), where we remove the use of α and δ.

mk+1i =mki +α.Vibf i.
(
sf − mki

)
+δ.random(−0.5, 0.5)

(26)

mk+1i =


mki + UnVecprey ∗ vi, if ecl(i) 6= ∅

mki + 〈f
best
i − mki 〉 ∗ vi, if ecl(i) = ∅

(27)

3) NON-DOMINANT MALE SPIDER MOVEMENT
The role of Non-Dominant male (ND) spiders in the basic
SSO is to guard the region in the communal web, which is not
occupied by any female or dominant male spider.ND spiders
work as an anticipation plan to catch solitary preys which
are not gathered with their hordes. The general movement of
ND spiders is shown in (28), where α is a random number
between (0, 1). Generally speaking, each ND spider tends
to gather in the central position of every ND spider by also
considering the weight of each ND spider.

mk+1i = mki + α.

(∑NND
h=1 m

k
h.Wh∑NND

h=1 Wh
− mki

)
where m is a NonDominant spider (28)

mk+1i =


mki + 〈X

nd(i)
cl − mki 〉.vi, if end(i)cl 6= ∅

mki + 〈XG − mki 〉.vi, if end(i)cl = ∅

(29)

According to (28), there is no other factor affecting the
movement of ND spiders besides the parameters of each ND
spiders. In the basic SSO algorithm, this ND movement is
managed not to be affected by other types of spiders. There is
a benefit by using this approach, which is ND movements
tend to be independent; thus, ND spiders are hoped to be
occupied in the necessary area. Nevertheless, different from
the basic SSO principle, we analyze that making ND spiders
independent potentially brings a critical drawback, which is
they cannot adapt their position to what is happening in the
communal web.

As an enhancement, in this research, we propose a new
behavior of ND as shown in (29) where mki represents the
position of a non-dominant male spider mi in the kth iteration.
Because we try to solve the MPME problem variant where
the evaders manage to attack a global target G, we propose
the use of non-dominant spiders as the last-perimeter of G
defenders. We set the stand by location of ND spiders near
to G. If there are some evaders successfully manage to come
near toG, theND spiders will try to chase the evaders, starting
from the closest one. We use the term of end(i)cl as the term of
closest evader to anND spider mi.ND spider ignores whether
end(i)cl is being chased by another pursuer. As long as there is
an evader near to G, ND will chase it. The position of end(i)cl
is notated as Xnd(i)cl in (29). If by any chance there are many
evaders are located near to G, there is a possibility where
ND spiders’ FV increase significantly and raise above FV
median of male spiders. If this happens, the ND spiders will
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change the role to be D spiders and use the dominant spider
movement algorithm.

E. SSO MATING PROCESS
→ One interesting procedure in SSO is the mating process
between dominant male (D) and female (F) spiders. In the
basic SSO, 1 spider D can mate more than 1 spider F. When
the mating stage is carried out, the characteristics of the new
generation are a mixed combination of the parameters held
by both parents. Let’s say a new individual snew is produced
from the mating of Dparent and Fparent. If each spider has n
parameters p1, p2, ..., pn, where pk(si) represents the kth-
parameter value of the individual si, then the value of each
parameter in the new individual snew can be written according
to equation (30). These pk parameters could be a spider
position on the x-axis, y-axis, z-axis, a spider speed, etc. Note
that the new individual parameter is a mixed collaboration of
the parameters of the female parent or dominant male parent.

pk (snew)=min between
k∈{1,2,...,n}

(
pk
(
Dparent

)
and pk

(
Fparent

))
(30)

When all new individual snew parameters have been pro-
duced, the fitness function is run to calculate the FV of
the new individual. If this FV is higher than the weakest
individual FV in the population, then the weakest individual
will be destroyed and the new individual will have the same
sex as the weakest individual who has just been destroyed.
However, if the FV of this new individual is no better than
the weakest individual FV, then this new individual will be
immediately destroyed when it has just been produced.

For some researches using SSO as its solution algorithm,
the SSO mating process might bring some good benefits
because this procedure can replace the weakest individual
with the better one. However, this approach cannot be con-
ducted in this research MPME problem variant because it is
impossible to destroy a pursuer drone when chasing evaders.
One approach that seems appropriate to replace the destruc-
tion step of the weakest individual is by moving the weakest
individual to the position of ‘‘new-born’’ individual. How-
ever, this step might consume time. Besides, we analyze that
this step can be substituted with the summoning process
produced by vibration factors. Thus, in this enhancement
method, we ignore and exclude the SSO mating process.

VI. RESULT AND ANALYSIS
A. BASIC CONFIGURATION
We implement our proposed method in a 3D-simulator using
Unity Engine, where the basic environment module can be
downloaded from https://unitylist.com/p/hcm/. Fig 7 shows
the general interface of our simulator environment. In our
simulator, the physical appearance of each drone agent is
similar, regardless of whether it is a pursuer or an evader. The
only difference between pursuers and evaders is located in
their color. Fig 8 shows the sample difference of the agents
we use. The physical body of an evader is colored with

FIGURE 7. General interface of simulation environment.

FIGURE 8. Color variety in pursuer drones.

brown color. Meanwhile, the pursuer drones have a pink color
for females, green color for dominant males, and blue color
for non-dominant males. As shown in Fig 7, there is a small
mini-map on the top right corner of our simulator screen to
visualize the position of each drone in our simulator. The
pink circle in Fig 7 mini-map indicates the border of the
defended area. Please note that each pursuer drone cannot
access the position of all evaders. Each pursuer can only know
the position of evaders inside its R2 region, as shown in Fig 6.

The colors in our simulator mini-map also represent the
agents in our simulation environment: brown for evaders,
pink for female spiders, green for dominant male spiders, and
blue for non-dominant male spiders. In our mini-map, there
is a little red-white-black circle at the center of mini-map.
This circle represents the coordinate of evaders’ global target
G. In our simulator, for each iteration, every agent can move
up to 0.5 distance units. Meanwhile, evaders’ damage range
rdamage in (1) is set to be 10 units. From the pursuers side,
every pursuer has rcapture (R1) set to be 2 units. Meanwhile,
the pursuer detection range (R2) is set to be the same as
rdamage, which is 10 units. Our mini-map is taken using a sky
view approach; it means the bigger circle of an agent in our
mini-map, the higher its position from the ground is.

To prevent the situation where pursuer drones lured to
move too far from global target G, we determine the max-
imum range of search space for each pursuer. We set the
maximum search range for female and dominant male spiders
as 2 times of rdamage, while the maximum range of search
space for non-dominant males is set to be twice of rcapture.
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FIGURE 9. The huge amount of swarm evader drones in experiment.

If by any chance, a pursuer is located outside its maximum
range, the pursuer will move towards G position until the
pursuer gets inside its maximum range. In our experiment,
G is only represented as a coordinate. It is represented
as a 3-color ball (red-white-black) in the sky. Because the
R2 region of each pursuer is set to be 10 distance units,
the height variety of every agent in our experiment is set
around± 5 units (above and below) from our global targetG’s
height.

B. BEHAVIOR OF EVADER DRONES
The behavior of evader drones surely influences the perfor-
mance of pursuer drones in handling attacks from evaders.
There can be a lot of variants for this movement. The
more complicated the evaders’ movement strategy, the more
Damageaccum they probably can produce. Evaders drone may
conduct some runaway maneuvers from pursuers. However,
this cannot bring any benefit for the evaders because the
evaders tend to get farther from global target G. The farther
an evader from G, the less its probability to conduct damage
towards G.
Because the problem variant discussed in this paper is

about evader drones conducting a kamikaze-like attack to
a global target G, we remove evaders’ capability to run
away from pursuers. Every evader moves directly to a
global target G without considering the location of pursuer
drones. Although this movement seems straightforward, han-
dling this maneuver is quite difficult, especially when the
number of evaders is high. As shown in Fig 9, there are
many brown evaders in front of some pursuers. Handling
Fig 9 situation effectively surely requires a sophisticated
approach.

The formula of evader drones’ movement is shown in (31),
where x je(t) represents the position of evader ej at iteration

t, meanwhile vje represents the speed of evader ej. In each
iteration, every evader ej moves directly in the constant height
towards the global target G position. When evader ej reaches
a position where it is near to G, it moves directly to G. Every
pursuer doesn’t know evaders’ maneuver. Each pursuer can
only detect the existence of evaders in the pursuer’s limited
detection range. Every evader cannot collide to any pursuer
and the evaders are not programmed to attack any pursuer.
The only objective evaders have is getting closer toG as soon

FIGURE 10. Evader formation variants in conducting attacks.

as possible then perform attacks to G.

x je(t+1)

=



x je(t) + 〈
(
xG.x − x

j
e(t).x

)
x̂ +

(
xG.z − x

j
e(t).z

)
ẑ〉 ∗ vje

if
∥∥∥x je − xG∥∥∥ > rdamage

2
x je(t) + 〈xG − x

j
e(t)〉 ∗ v

j
e,

if
∥∥∥x je − xG∥∥∥ ≤ rdamage

2

(31)

There are two main formation evaders conduct in this
research, as shown in Fig 10. First is an arrow-like formation
that imitates the shape of the triangle group. This formation is
shown on the left side and right side of Fig 10. The second for-
mation is a rectangle-like formation, as shown in the upside
and downside of Fig 10. In each formation, every evader has
varied altitudes. In the initialization step, the nearest evader
is located in 40 distance units from global target G. We use
these two formations because this formation can represent
the possible basic formation of swarm evader drones when
attacking a global target.We do not use an arbitrary-formation
because the consistency for this formation handling is hard to
be measured.

C. EXPERIMENT PARAMETER
In this research, we propose an optimization algorithm for
solving a problem variant of MPME. Thus, to measure the
effectiveness of our proposed method, we compare our pro-
posed method with other methods for solving the discussed
MPME problem variant. We use 3 methods for comparison.
Table 1 describes the maneuver conducted in each of our
comparison methods. To the best of our knowledge, there is
no open-source method that comprehensively discusses the
code to handle the MPME problem variant raised in this
research. For that case, we develop our comparison method
as objective as possible.

Because we use comparison-method as our basis measure-
ment approach, the behavior of evader drones does not affect
the comparison results. If the evader drones’ movement gets
more complicated, the performance result of our proposed
method and the basis-comparison method will become lower.
Thus, by using only one evader drones’ movement behavior,
as explained previously, the performance analysis of the pro-
posed method is sufficient.

As described in the problem formulation and research
scope sections, we use two parameters to measure our

22156 VOLUME 8, 2020



A. Y. Husodo et al.: Enhanced SSO Algorithm for Increasing Performance of MPD in Neutralizing Attacks From MED

TABLE 1. Methods variety used for performance comparison.

proposed method performance: Damageaccum and iteration
time. Iteration time starts at time t = 1 where every agent
is located in its initial positions as described earlier. Iteration
time stops at tend when there is no evader in the simulation
environment. If twomethods perform the sameDamageaccum,
then a method with less tend indicates that the method per-
forms better than another. Because of this parameter, we do
not program each evader to perform a hiding maneuver
because it could bring bias to our performance measurement.

We do not use the success rate as our parameter because,
at the end of each experiment, every method should capture
all the evaders because the evaders do not try to run away
from any pursuer. The success rate in each of our experiments
is always 100%. According to our problem domain, the suc-
cess rate is not quite relevant to be used as a measurement
parameter because what this problem domain needs is how
to minimize the damage caused by evaders. We do not use
travel-distance either as our measurement parameter because
of this problem domain concern.

Themain parameter used as our performancemeasurement
is Damageaccum. It directly indicates how much damage a
global target G receives from evaders’ attack. To gain com-
prehensive results about this parameter, we conduct varied
cases for the number of pursuers and evaders involved in each
experiment. The following section will describe the variety
of experiments we conduct. Because the MPME problem is
a dynamic problem, where each agent involved can conduct
different movements in every experiment, we repeat simula-
tion for each case up to 10 times then calculate the average
results as our measurement value.

Because in (25) we use α and β as multiplying factors
for vibrational effect, where the final multiplication result
should be in the form of a unit vector; thus, the exact value

TABLE 2. Values used for experiment.

TABLE 3. Mean damage accumulation measurement result.

of α and β does not matter. The important thing about this
parameter is the comparison value between the two of them.
Because we consider that many evaders should surround the
best spider, we set the value of β with a 3 times value of α.
If the distance of best spider sb is too far from a spider si,
of course, the impact of β is neglectable. Table 2 contains the
summary of values we use in our simulation. The result of our
simulation is discussed in the next section.

D. EXPERIMENT RESULT
Table 3 and Table 4 describe the experiment results we obtain
from our simulation. Please remember that the values written
in both tables are calculated from the mean values of each
aspect after experimenting with each case for 10 repetitions.
The more detail value for data in Table 3 can be observed
in Table 5 and Table 6. Meanwhile, the more detail value for
data in Table 4 can be observed in Table 7 and Table 8.

Please notice that the number of pursuers and evaders
in Table 5 – Table 8 is similar to the number of pursuers
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TABLE 4. Mean iteration time measurement result.

TABLE 5. Damage accumulation measurement result detail 1.

and evaders in Table 3 and Table 4 for each case number. For
readability easiness, we round the values in Table 3 – Table 8
except for the value of standard deviation. In our analysis
section, we focus our discussion on Table 3 and Table 4 data.
Fig 11 and Fig 12 show the plot of each method’s perfor-
mance measured from the mean of Damageaccum aspect and
iteration time parameters. For each parameter, the less value
produced by a method, the better performance the method
has. According to our experiment, in general, the proposed
method performs better than the other compared methods.

E. PERFORMANCE ANALYSIS
According to data shown in the previous section, there are two
main parameters we can analyze for performance measure-
ment. First is damage accumulation (Damageaccum), and sec-
ond is iteration time (t). For Damageaccum parameter, we can
analyze that our proposed method mostly performs better
than the other algorithms. Our proposed method is only out-
performed by Switching Target (ST) algorithm in case 3.
Meanwhile, our proposed method is also outperformed by
Brute Force (BF) algorithm in case 1. We analyze the reason
behind this is because the number of pursuers is still low,
which is only 20.

TABLE 6. Damage accumulation measurement result detail 2.

TABLE 7. Iteration time measurement result detail 1.

TABLE 8. Iteration time measurement result detail 2.

According to our experiment, when the number of pur-
suers increases, the proposed method’s performance result
becomes higher. As explained earlier, the basic approach
of our proposed method relies on the coordination among
pursuers (spiders). Thus, when the number of pursuers is
not so high, the coordination effectiveness of the proposed
method is not so high either.When the number of the pursuers
is high, the performance of our proposed method is good.
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FIGURE 11. Comparison of mean damage accumulation chart.

FIGURE 12. Mean iteration time comparison chart.

We realize that we have not compared our proposed
method with any other methods beyond our authors’ design.
However, the compared methods used in the authors’ exper-
iment can generally reflect the foundation methods available
to handle the MPME problem variant discussed in this paper.
TheWD, BF, and ST algorithms are the basic principle of any
possible algorithms used for solving the discussed MPME
problem. Thus, comparing our proposed method with these
algorithms is technically sufficient as an objective perfor-
mance measurement approach.

The use of ND spiders as the last perimeter defender
contributes significantly to our proposed method.When there
are some evaders successfully infiltrate to the near global
targetG, theseND spiders can be used to capture the evaders.
Enhancement on female and dominant-male spiders in holis-
tic also contributes to our good performance. Mathematically
speaking, we introduce some new equations to be used as
SSO enhancement for solving the discussed MPME problem
variant. Thus, in general, we can state that the proposed
method brings novelty to the computer science research field,
where it produces a magnificent result.

From the iteration time parameter, our experiment results
show that there are no significant differences among all com-
pared methods for each case. It means that the proposed
method does not significantly affect the time needed for

pursuers to catch evaders. Because the pursuers in the pro-
posed method conduct a distributed algorithm, the compu-
tational load among the pursuers is evenly shared. If we
relate the iteration time with the energy used for capturing
evaders, we can conclude that the proposed method does
not increase energy consumption significantly to capture all
evaders. In some cases, the proposed method even decreases
the iteration time. We understand that there are some other
factors related to energy consumption calculation. Neverthe-
less, we provide iteration time as a basic parameter to predict
the energy raising needed by the proposed method to perform
the proposed algorithm.

Because the main parameter used for the performance
evaluation is Damageaccum, we want to highlight the exper-
iment results for this parameter. According to our exper-
iment in Table 3, some data show our proposed method
outperforms the other algorithms. Here, we ignore the result
of Case 4 in Table 3 because the value of each method is
around 0. Case 10 shows that our proposed method reduces
the Damageaccum of WD algorithm up to 95%. Case 10 also
shows that our proposed method reducesDamageaccum of BF
algorithm up to 92%. Meanwhile, Case 5 shows that our pro-
posed method can reduceDamageaccum of ST algorithm up to
63%. The reduced percentage of Damageaccum produced by
our method depends on the number of pursuers and evaders
involved in the experiment.

Although the problem domain exposed in this paper is
related to a dynamic environment, we realize that the exper-
iment result may be varied in each repetition for the same
case. That is why we repeat the experiment in each case for
10 times of repetition. Because our experiment results have
created a pattern showing that our proposed method has a
stable improvement when the number of pursuers has been
high, we can conclude that our proposed method brings a
significant novelty to the computer science research field.

VII. CONCLUSION
This research develops a coordination algorithm for improv-
ing the performance of multiple pursuers P in capturing
multiple evaders E on the Multiple-Pursuer Multiple-Evader
(MPME) problem variant. The problem variant we discussed
in this paper is every evader in E does not try to run away
from P; however, a group of evaders E tries to attack a
specific area (target) guarded by P. The basis of our proposed
algorithm is Social Spider Optimization (SSO) algorithm.
We enhance some aspects of the SSO approach to fit in our
problem domain.

We compare our proposed method with three other algo-
rithms, which are Waiting Defender (WD), Brute Force (BF),
and Switching Target (ST) algorithms. According to our
experiment, the best performance of our proposedmethod can
reduce the damage of WD up to 95%, damage of BF up to
92%, and damage of ST up to 63%. Meanwhile, the iteration
time for our proposed method is relatively the same as the
iteration time consumed by other compared methods. From
computer science theoretical knowledge, we can conclude
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that our proposed method brings a novelty to the computer
science research field.

For future work, we would like to consider the develop-
ment of some SSO variants to improve our results. We also
plan to conduct some research related to this topic where the
evaders can perform some sophisticatedmaneuvers. Themost
important thing in our research roadmap is implementing our
proposed algorithm in the real device. For now, we hope
our current research can be useful as a foundation for future
development in MPME research topic area.
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