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Sliding-Mode Control of Wave Power Generation Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . Aitor J. Garrido, Izaskun Garrido, Modesto Amundarain, Mikel Alberdi, and Manuel De la Sen 2372

Comparative Study of PMSM Drive Systems Based on Current Control and Direct Torque Control in Flux-Weakening

Control Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yukinori Inoue, Shigeo Morimoto, and Masayuki Sanada 2382

Novel Field-Weakening Control Scheme for Permanent-Magnet Synchronous Machines Based on Voltage Angle

Control . . . . . . . . . . . . . . . David Stojan, Dušan Drevenšek, Željko Plantič, Bojan Grčar, and Gorazd Štumberger 2390
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A Dual Five-Phase Space-Vector Modulation
Algorithm Based on the Decomposition Method

Martin Jones, I. Nyoman Wahyu Satiawan, Nandor Bodo, Student Member, IEEE, and Emil Levi, Fellow, IEEE

Abstract—Open-end winding variable speed drives with dual-
inverter supply have been extensively investigated for various
applications, including series hybrid power-trains and propulsion
motors. The topology is simple to realize while offering a higher
number of switching states without the need for capacitor voltage
balancing algorithms, when compared to standard multilevel con-
verters. The overwhelming majority of work is, however, restricted
to the three-phase electric machinery. One of the reasons for this
is that inclusion of a multiphase machine leads to exponential in-
crease in the number of possible switching states, and so the design
of a suitable space vector modulator (SVM) represents a consid-
erable challenge. This paper considers a relatively simple SVM
algorithm based on the decomposition of the three-level space
vector decagon into a number of two-level decagons. The proposed
modulation technique has the advantage of being relatively simple
to implement. The drive produces multilevel load phase voltages
with negligible low-order harmonic content. Despite the simplicity
of the method, the quality of the output voltages is improved,
compared to the previously proposed methods. The developed
scheme is verified via detailed simulations and experiments using
a five-phase induction machine under open-loop V/f control.

Index Terms—Induction motor drives, multiphase ac drives,
open-end winding, space vector modulation.

I. INTRODUCTION

MULTILEVEL and multiphase voltage source inverters
(VSIs) have been attracting increasing research interest

recently due to their ability to overcome voltage and current
limitations of power semiconductors and their inherent ability
to tolerate faults [1]–[3]. Multilevel inverters are considered as
a topology which enhances the quality of the output voltage
waveform, reduces dv/dt, and enables the construction of a
high power converter without the problem of switching series-
connected semiconductor devices. There are numerous configu-
rations of multilevel converters, the main ones being the neutral
point clamped (NPC), the flying capacitor, and the cascaded
converters [4].

The open-end winding topology, originally described in [5],
can be considered as an alternative approach to create multilevel
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load phase voltage waveforms. The equivalence of the topology
with a two-level inverter on each side of the stator winding and
three-level or four-level single-sided supplied drive (depending
on the dc-bus voltage ratio) is shown in terms of performance
and created multilevel load phase voltages in [6] for three-
phase drives. The open-end topology has the advantages that
the additional diodes used in the NPC VSI are not needed,
leading to a saving in the overall number of components.
Furthermore, the issue of proper capacitor voltage balancing
does not exist if the supply is two level at each winding side.
Typically, three-phase VSIs are utilized. It has been suggested
in the literature that such drives may, in the future, offer an
alternative supply solution in applications such as EVs/HEVs
[7]–[9], electric ship propulsion [10], and rolling mills [11].
Recent research efforts have been directed toward investigating
the potential of this supply configuration in renewable electric
energy systems [12] and fault-tolerant drives [13].

Due to their well-known advantages [1], multiphase drives
have also been considered for similar applications as the mul-
tilevel drives. As a consequence, some researchers have be-
gun investigating the benefits of combining both technologies
[14]–[24]. Recently, some research effort has been directed
toward the multiphase open-end winding topology [14]–[18].
An asymmetrical six-phase induction motor drive has been
developed in [14], [15]. In [14], the supply is provided by
means of two isolated two-level six-phase VSIs. The goal
was in essence low-order harmonic elimination/reduction rather
than the multilevel operation, so that the dual converter is not
operated in multilevel mode. The topology discussed in [15]
uses four three-phase two-level inverters, with four isolated dc
sources, to prevent circulation of zero sequence currents. The
space vector modulator (SVM) control is performed in essence
independently for the two three-phase windings, using the
nearest three vectors approach in conjunction with three-level
inverter. The work is focused on controlling the power sharing
between the four converters. The five-phase configuration has
been examined in [16], [17] and a suitable SVM algorithm
proposed. In [18], the SVM algorithm of [17] is extended to
the seven-phase structure.

The remaining literature is primarily centered on the five-
phase NPC VSI fed drive [19]–[23]. The first SVM techniques
for multiphase VSIs were based on the simple extension of
the three-phase multilevel SVM approaches, so that only the
three vectors, nearest to the reference, were utilized [19]. As
a consequence, only the first plane of the multiphase system
is controlled. In principle, the number of applied vectors must
equal the number of phases [1]. Hence, numerous low-order
harmonics are generated, which map into the second plane. A

0093-9994/$31.00 © 2012 IEEE
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SVM method, which controls both planes, has been developed
in [20] for the three-level NPC VSI fed five-phase drive, and it
was extended to the seven-phase case in [21]. The SVM method
is complicated, particularly the sector identification, since each
36◦ sector is partitioned into ten subsectors. A different ap-
proach to the SVM of multilevel multiphase systems is given
for a general case of an m-level, n-phase VSI in [22]. The al-
gorithm is based on the considerations of the multidimensional
(n-dimensional) space and therefore does not include decompo-
sition of the n-dimensional space into 2-D planes. A somewhat
similar method, in the sense that decomposition into 2-D planes
is not utilized, is the one in [23], where a multiphase multilevel
PWM is developed using n single-leg modulators. Level-shifted
and phase-shifted carrier-based PWM methods have recently
been applied to the five-phase open-end topology in [24], where
it was shown that PWM methods developed for NPC converters
can be applied to the five-phase open-end topology.

This paper develops further the modulation method origi-
nally proposed in [25] for a five-phase open-end winding drive,
based on two two-level inverters. The SVM algorithm is based
on the decomposition of the three-level space vector decagon
into a number of two-level decagons. A similar idea has been
proposed in [26] for a three-phase NPC inverter and in [27]
for a three-phase open-end winding drive. In the case of the
five-phase open-end winding drive, the situation is significantly
more complicated since both 2-D planes have to be considered.
It is shown here that the algorithm proposed in [26] can lead to
an increase in the dc-link voltage of one of the inverters, over
a small operating range, and a simple solution is suggested as
a remedy. The proposed modulation strategy is verified for the
first time using detailed simulations and a set of experiments.
The results indicate that the method is capable of achieving the
target fundamental while eliminating fully any low-order har-
monic content in the output load phase voltage. Furthermore,
the modulation method gives superior harmonic performance
to the one given in [17].

The paper begins with a review of the five-phase two-
level drive characteristics followed by a general description
and mathematical model of the cascaded topology, including
mapping of the space vectors into the 2-D planes. Next, the
proposed modulation method is described. It is shown that due
to the nature of the five-phase topology one of the inverters
needs to be operated using so-called multi-frequency SVM [28]
and the inverters must operate with slightly different dc-link
voltages. Finally, simulation and experimental results verify the
performance of the drive.

II. GENERAL PROPERTIES OF TWO-LEVEL

FIVE-PHASE DRIVES

Prior to considering the SVM scheme for the open-end wind-
ing topology, it is beneficial to review the basic relationships
which govern the performance of five-phase drives and the
corresponding two-level SVM technique for a five-phase VSI.
A five-phase machine can be modeled in two 2-D subspaces, so-
called α− β and x− y subspaces [1]. It can be shown that only
current harmonic components which map into the α− β sub-
space develop useful torque and torque ripple, whereas those

Fig. 1. Two-level five-phase VSI space vectors in the α− β and x− y
planes.

that map into the x− y subspace do not contribute to the torque
at all. A multiphase machine with near-sinusoidal magneto-
motive force distribution presents extremely low impedance
to all non-flux/torque producing supply harmonics, and it is
therefore mandatory that the supply does not generate such
harmonics. What this means is that the design of a five-phase
PWM strategy must consider simultaneously both 2-D sub-
spaces, where the reference voltage, assuming pure sinusoidal
references, is in the first plane while reference in the other
plane is zero. Two-level five-phase inverters can generate up
to 25 = 32 voltage space vectors with corresponding compo-
nents in the α− β and x− y subspaces, as shown in Fig. 1.
Space vectors are labeled with decimal numbers, which, when
converted into binary code, reveal the values of the switching
functions of each of the inverter legs. Active (non-zero) space
vectors belong to three groups in accordance with their mag-
nitudes - small, medium and large space vector groups. The
magnitudes are identified with indices s, m, and l and are given
as, respectively, |vs| = 4/5 cos(2π/5)Vdc, |vm| = 2/5Vdc, and
|vl| = 4/5 cos(π/5)Vdc. Four active space vectors are required
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Fig. 2. Five-phase open-end winding topology.

to generate sinusoidal voltages [1]. In order to provide zero
average voltage in the x− y plane two neighboring large and
two medium space vectors are selected [29]. It is shown in
[30], [31] that the maximum peak value of the output funda-
mental phase-to-neutral voltage in the linear modulation region
is vh1max = 0.525Vdc, resulting in the maximum modulation
index, M = 1.05. Switching pattern is a symmetrical PWM
with two commutations per inverter leg.

III. FIVE-PHASE OPEN-END WINDING TOPOLOGY

Fig. 2 illustrates the open-end winding structure, based on
utilisation of two two-level five-phase VSIs. The two inverters
are identified with indices 1 and 2. Inverter legs are denoted
with capital letters, A,B,C,D,E and the negative rails of the
two dc-links are identified as N1 and N2. Machine phases are
labeled as a, b, c, d, e. Load phase voltage positive direction is
with reference to the left inverter (inverter 1). Two isolated dc
supplies are assumed so that the common mode voltage (CMV)
vN1N2 is of non-zero value (the issue of CMV elimination
is not addressed here). The resulting space vectors in dual-
inverter supply mode will depend on the ratio of the two dc-
link voltages. When the dc-link voltages are equal, i.e., Vdc1 =
Vdc2 = Vdc/2, the resulting space-vector pattern is identical
to the equivalent single-sided three-level supply. Using the
notation of Fig. 2, load phase voltages of the stator winding
can be given as

va = vA1N1 + vN1N2 − vA2N2

vb = vB1N1 + vN1N2 − vB2N2

vc = vC1N1 + vN1N2 − vC2N2

vd = vD1N1 + vN1N2 − vD2N2

ve = vE1N1 + vN1N2 − vE2N2. (1)

Space vectors of load phase voltages in the two planes are
determined with

vα−β = (2/5)
(
va + avb + a2vc + a3vd + a4ve

)
vx−y = (2/5)

(
va + a2vb + a4vc + a6vd + a8ve

)
(2)

where a = exp(j2π/5). Using (1) and (2), one gets

vα−β = vα−β(A1B1C1D1E1) − vα−β(A2B2C2D2E2)

vx−y = vx−y(A1B1C1D1E1) − vx−y(A2B2C2D2E2) (3)

since vN1N2(1 + a+ a2 + a3 + a4) = 0.

Fig. 3. Space-vector distribution of the dual-inverter supplied five-phase
open-end topology in the α− β plane, Vdc1 = Vdc2 = Vdc/2.

In (3), the two space vectors on the right-hand sides of the
two equations are corresponding voltage space vectors of the
two five-phase two-level VSIs, which come in three different
lengths already discussed in the previous section. Their combi-
nations result in 211 voltage space vectors, produced by 1024
possible switching states [16].These are illustrated in Fig. 3 for
the α− β plane. Space-vector mapping into the x− y plane
follows the pattern that exists for a five-phase VSI, the largest
vectors of the first plane map into the smallest vectors of the
second plane and so on. A consequence of the greater number
of voltage space vectors is an increased number of load phase
voltage levels.

IV. PRINCIPLE OF THE PROPOSED ALGORITHM

Another consequence of the large number of switching
states and space vectors is that the development of a suitable
SVM strategy is challenging. The complexity of selecting the
proper switching states for a given command voltage can be
significantly reduced if the three-level space-vector decagon is
decomposed into a number of two-level decagons as shown in
Fig. 3. A similar approach was followed in [27] for the three-
phase case. The center decagon comprises vectors which can
be activated if one inverter is used up to half of the achievable
maximum voltage with the other one locked in a zero vector
state. As a consequence, the converter is in two-level mode of
operation based on four active and zero vector application, as
discussed in Section II and [29]. As can be seen in Fig. 3, the
origins of the outer decagons are located on the outer vectors
of the inner decagon, denoted by the larger dots in Fig. 3,
which correspond to the outermost vectors and switching states
given in Fig. 1. In the case of the three-phase topology [27],
operation in the outer region (outer hexagon) is achieved when
one inverter operates with a single voltage space vector applied
(the nearest one to the reference), and the second inverter
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is modulated using the standard three-phase two-level SVM
technique. Let the applied vector for one inverter be vi, and
let the reference be v∗. Here, vi is the vector produced by the
inverter that is the nearest to the reference, and v∗ exceeds, in
magnitude, maximum voltage realizable with one inverter. The
reference for the other inverter is then set as

v∗∗ = −(v∗ − vi). (4)

In other words, when the magnitude of the reference voltage
exceeds the maximum value obtainable with one inverter, one
inverter is operated in six-step (i.e., ten-step) mode, while the
second inverter is modulated in the standard way.

It is well known that operation of a five-phase inverter in
ten-step mode, without a controllable dc-link voltage, leads
to uncontrollable fundamental output voltage magnitude and
unwanted low-order harmonics, which, for the leg voltage of
inverter 1, can be expressed as a Fourier series as

vleg=
2

π
Vdc1

[
sinωt+

1

3
sin 3ωt+

1

5
sin 5ωt+

1

7
sin 7ωt . . .

]
.

(5)

In a five-phase system, harmonics of the order 10k ± 1(k =
0, 1, 2, 3 . . .) map onto the torque/flux producing subspace,
α− β, while harmonics of the order 10k ± 3 map into the
x− y subspace. They do not produce any useful torque/flux
and simply lead to large unwanted loss-producing currents.
The large currents are a consequence of the relatively small
impedance presented in x− y plane. 10k ± 5 are zero-
sequence components. This leads to the requirement that the
second inverter must be able to not only control the fundamental
but also eliminate the unwanted low-order harmonics, which
are produced by applying only the large vector in the α− β
plane from one inverter. This causes unwanted harmonics in
both planes since a large vector has a corresponding non-zero
value in the second, x− y plane (Fig. 1). In order to achieve
this objective, the second inverter modulation scheme will need
to operate in both the α− β and the x− y planes, since the
references for the second inverter can be given as

v∗∗α = −
(
v∗α − vi(α)

)
v∗∗β = −

(
v∗β − vi(β)

)
v∗∗x = vi(x) v∗∗y = vi(y). (6)

Here, i = 1 . . . 10 stands for the large vector of the first VSI.
A SVM, which achieves simultaneous control in both the
α− β and x− y planes, was developed in [28] in order to
control multiphase multi-motor drive systems. A schematic
illustration of the SVM process is shown in Fig. 4. This SVM
method utilizes two two-level five-phase SVMs, as described in
Section II. Each space-vector modulator operates in a separate
plane. The duty cycles from the SVMs are summed according to
the phase transposition rule [32]. The phase transposition [32]
enables the lower five-phase SVM to operate in the x− y plane.
This further simplifies the algorithm since identification of the
sector, dwell time calculation and the vector look-up table are
identical for both modulators.

As a result of the proposed modulation technique for the
open-end winding configuration, the converter operates using

Fig. 4. Signal flow of the five-phase multi-frequency space-vector modulator.

Fig. 5. Five-phase dual-inverter switching combinations.

only the large vectors from one inverter and any combination
of vectors from the other inverter, as illustrated in Fig. 5. This
reduces the number of switching states to 342 (320 of these are
the states met when both inverters operate, while 22 states are
those that are encountered when only one inverter operates).
The 342 switching states produce 151 vectors in the α− β and
x− y planes, as shown in Fig. 6. It can be seen that no large
vectors are produced in the x− y plane. Taking into account the
number of space vectors and (1), the maximum number of load
phase voltage levels is 15. A signal flow diagram of the com-
plete space-vector modulation scheme is presented in Fig. 7(a).
When M < 0.525, the switches in Fig. 7(a) are opened (in the
upper position), meaning that the ten-step inverter is locked,
with all upper or lower switches on, (i.e., so-called zero vector
is applied), thus forming a star connection and the machine is
supplied in single-sided mode. The second inverter is operated
as a two-level inverter according to the SVM method outlined
in Section II and discussed in detail in [29].

It is interesting to note that the two-level multiphase SVM
method employs the same space vectors for the same dwell-
times as one carrier-based PWM method [29] and thus gives the
same results in terms of phase and line-to-line voltages. This
equivalent carrier-based PWM method is the one with offset
injection (i.e., zero-sequence signal injection), defined as vzs =
−0.5(max{v∗j}+min{v∗j}, j = a, b, c, d, e. Therefore, it can
be concluded that the multi-frequency two-level modulator of
Fig. 4 may be replaced with a carrier-based approach. Such an
approach is shown in Fig. 7(b). It follows that the simulation
and experimental results presented in this paper for the SVM
are equally applicable to the carrier-based two-level modulation
method with offset injection.
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Fig. 6. Decomposed SVM space-vector distribution of the dual-inverter sup-
plied open-end winding five-phase topology, in the α− β and x− y planes.

V. DC-LINK VOLTAGES

For clarity, it is beneficial to define the modulation index
of the space vector-modulated inverter as M2 = v∗∗/(0.5Vdc2).
Only inverter 2 is operational up to the point when M =
0.525(M2 = 1.05). Hence, the converter operates in two-level
mode, since inverter 1 is not engaged and is locked in a zero
switching state 11111 or 00000, forming a neutral point. It
is worth noting that the converter output is still significantly
improved compared to the equivalent two-level single-sided
configuration since the inverter is switching across the load half
of the equivalent two-level converter’s dc-link voltage. When
M > 0.525, the second inverter operates in ten-step mode.
In this operating regime, the space vector-modulated inverter
will output the difference between the voltages created by
the ten-step mode inverter and the reference. Since the output
fundamental voltage of the ten-step inverter is fixed, there is
a narrow band of modulation indices (0.525 < M ≤ 0.637)
where the fundamental output voltage of the ten-step inverter is
greater than the reference voltage. Therefore, in this operating
region, the SVM inverter acts to decrease the fundamental
created by the ten-step inverter. At these modulation indices,
all the power is supplied by the ten-step inverter, and what is

Fig. 7. Signal flow of the decomposition method using SVM modulator (a) or
a carrier-based modulator (b).

Fig. 8. Operating regions for system with equal 300-V dc-link voltages
(a) and adjusted dc-link voltages (b).
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Fig. 9. Acceleration to 30 Hz with equal dc-link voltages: Inverter references,
torque, speed response, and inverter dc-link voltages.

not consumed by the load is absorbed by the SVM inverter.
If there is no regenerative rectifier on the side of the SVM
inverter, its dc-link capacitor voltage will raise until the braking
chopper is activated, and the energy is dissipated. Fig. 8(a)
depicts the switching states used when the large vector 11001
is applied by the ten-step inverter along with the reference
circular path for the relevant modulation indices. M = 1.05
is the maximum modulation index, M = 0.525 is half of the

Fig. 10. Acceleration to 30 Hz with adjusted dc-link voltages according to
(10) and (11): Inverter dc-link voltages, machine phase “a” voltage and stator
phase “a” current waveforms and spectra.

maximum modulation index, the point at which the ten-step
inverter starts to operate, and the lower boundary where the dc-
link voltage increase begins. M = 0.637 (i.e., 2/π) coincides
with the magnitude of the fundamental of the ten-step inverter
and is the upper boundary of dc-link voltage increase after
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Fig. 11. Operation at M = 1.05, with adjusted dc-link voltages: Machine
phase “a” voltage waveform and spectrum.

Fig. 12. Operation at M = 1.05, with adjusted dc-link voltages: Machine
stator phase “a” current waveform and spectrum.

which no further increase is seen. The black dots in Fig. 8
are the vectors applied by the ten-step inverter, while the gray
dots with underlined binary numbers are the vectors applied
during the operation of both inverters. The increase is strongly
dependent on the inductive part of the load impedance and can
be substantial, leading to activation of the dynamic brake in the
SVM inverter. One way to prevent this issue is to adjust the
dc-link voltage ratio in such a way that the first harmonic of
the ten-step inverter output equals the fundamental generated
by the SVM inverter when at maximal modulation index, when
operated on its own

vh11 = vh1max
2 . (7)

The maximum achievable fundamental for a five-phase two-
level SVM inverter is given with [29]

vh1max
2 =

Vdc2

2 cos (π/10)
. (8)

Fig. 13. Oscilloscope recordings of load phase voltage and current waveforms
at M = 0.55 (top), M = 0.6 (middle), and M = 1.05 (bottom).

The fundamental voltage of the ten-step inverter is from (5)

vh11 =
2

π
Vdc1 (9)

Setting Vdc = Vdc1 + Vdc2 = 600 V to give the equivalent of
single-sided three-level supply with a 600-V dc-link and taking
into account (7)–(9), the required values for the individual
inverter dc-link voltages are:

Vdc1 =
600

1 + 4 cos
(

π
10

)
/π

= 271.38 V (10)

Vdc2 =
600

1 + π/4 cos
(

π
10

) = 328.62 V. (11)

The highest achievable peak fundamental of the SVM inverter is

vh1max
2 = vh11 =

600

2 cos
(

π
10

)
+ π/2

= 172.76 V (12)

which corresponds to the modulation index M = 0.57. This
means that the SVM inverter will operate alone up to M =
0.57(M2 = 1.05).When M > 0.57 the ten-step inverter will
operate as well. The adjustment of the dc-link voltages
obviously leads to a somewhat different layout of the space
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Fig. 14. Load phase voltage (top) and current (bottom) waveforms and spectra
at M = 0.6.

vectors of the open-end winding converter, as shown in
Fig. 8(b) for the case when the ten-step inverter applies the
vector 11001. It can be seen that, although the SVM inverter
applies the same switching states as in Fig. 8(a), the operating
regions have changed, and the small region where the SVM
inverter dc-link voltage is boosted has disappeared.

VI. SIMULATION VERIFICATION

In order to verify the converter’s performance, a series of
detailed simulations were undertaken using the PLECS en-
vironment. Initially, the dc-link voltage of each inverter is
300 V (Vdc1 = Vdc2 = Vdc/2), the switching frequency of the
modulated inverter is 2 kHz, and the implemented dead time is
6 μs. The IGBT and diode models include an on-state resistance
of 10 mΩ. The drive is operated in open-loop V/f mode. The
voltage reference profile is such that the supply frequency of
the machine is ramped from zero to 50 Hz in 0.8 s. At the
operating frequency of 50 Hz the modulation index M = 1 is
reached. Voltage boost is not included. The machine parameters
are Lγs = 45 mH, Lγr = 15 mH, Lm = 515 mH, Rr = 3 Ω
and Rs = 3 Ω and are those of the induction machine used
further on in the experiments. First, acceleration of the drive

Fig. 15. Load phase voltage (top) and current (bottom) waveforms and spectra
at M = 1.05.

from standstill to 900 rpm (30 Hz) is examined. Fig. 9 shows
the developed torque and speed, the dc-link voltages, and the
leg voltage references of the inverters. The dc-link voltage of
the SVM inverter experiences a considerable increase. It can be
seen that the increase coincides with the activation of the ten-
step inverter (inverter 1) and is therefore a consequence of the
excessive fundamental provided by the ten-step inverter.

Next, the individual inverter dc-link voltages are adjusted
according to (10) and (11), and the simulation is re-run. The
inverter references and machine torque response are similar to
those already presented and are hence not given. Fig. 10 shows
the dc-link voltage of the inverters, the steady-state machine
phase “a” voltage and current waveforms and spectra. Clearly,
the adjusted dc-link voltage setting has prevented the rise in
dc-link voltage. The load phase voltage shows the converter
operating in multilevel mode. The voltage and current spectra
show a small amount of low-order harmonic content, predom-
inantly the third. It is shown in [33], [34] that these harmonics
are a consequence of the dead time and can be eliminated by a
suitable closed-loop current control method. In other words, the
low-order harmonics are not a direct result of the modulation
method. Figs. 11 and 12 present the stator phase “a” voltage and
current waveforms and spectra, respectively, for the case when
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Fig. 16. Experimental setup.

M = 1.05 (maximum). The load phase voltage and current
contain again a small amount of low-order harmonics and the
fundamental magnitude matches the reference.

VII. EXPERIMENTAL VERIFICATION

The experimental results are obtained using two cus-
tom built five-phase two-level VSIs which utilize Infineon’s
FS50R12KE3 IGBTs. A four-pole five-phase induction motor
is connected to the converter. Each stator phase consists of
two half-windings, which can be connected in series or in
parallel. In this paper, the half-windings are series connected.
Parameters of this motor have been used in the simulation study
of Section VII. The inverters are controlled using a dSPACE
DS1006 processor board. The dSPACE module is connected
to the VSIs via a dSPACE DS5101 digital waveform unit. The
dc-link voltages are created for the two inverters of the open-
end topology by using two isolation transformers, to isolate the
mains supply, and variacs to adjust the voltage according to
(10) and (11). The switching frequency of the SVM inverter is
2 kHz, and the inverter dead time is 6 μs. The motor is
controlled in open-loop V/f mode with the maximum modu-
lation index (M = 1.05) being reached when the fundamental
frequency is 52.5 Hz.

The waveforms are obtained using a Tektronix MSO 2014
Mixed Signal Oscilloscope. The machine phase “a” voltage is
obtained using a Tektronix P5205A High Voltage Differential
Probe, while the current waveform on channel 2 is obtained
using a Tektronix TCP0030 Current Probe. Oscilloscope screen
shots, showing the machine phase “a” voltage and current, are
presented in Fig. 13 for operation when M = 0.55, M = 0.6
and M = 1.05. It can be seen that the converter operates in two-
level mode when M = 0.55, as evidenced by the nine levels in
the load phase voltage. When M = 0.6, the ten-step inverter
is operational, and the converter operates in multilevel mode.
Operation at M = 1.05 produces the maximum number of load
phase voltage levels.

Figs. 14 and 15 depict the voltage and current waveforms
and their associated spectra for the case when M = 0.6 and

M = 1.05, respectively. The FFTs of the load phase voltage
and currents are obtained by measuring the load phase voltages
and currents in 125 000 points. The resolution of the wave-
forms obtained in this way enables processing by Matlab to
calculate the spectra. A good agreement between simulations
and experiments can be observed by comparing Figs. 10–12
with Figs. 14 and 15. The voltage and current waveforms
and FFTs match reasonably well. A small amount of low-
order harmonics appears in the simulation and experimental
results, and the rms of the fundamental reaches the expected
level. Inevitably, there are some very minor disagreements,
caused by un-modeled phenomena and imprecise parameters
such as semiconductor turn-on and turn-off times, voltage
drops on the semiconductors, machine parameters, and stray
capacitances.

A photograph of the experimental setup is given in Fig. 16.

VIII. CONCLUSION

This paper has presented a SVM method for the dual-inverter
five-phase open-end winding topology. The algorithm is rela-
tively easy to implement since the modulation of the multilevel
converter is considered from the perspective of two five-phase
two-level converters. It is shown in the paper that the dc-link
voltages of the individual converters must be properly selected
in order to avoid unwanted power transfer from one dc-link
to the other dc-link, which may cause an unacceptable rise
of the dc-link voltage of one inverter. When the modulation
index is below the value of 0.57, the converter operates in
two-level mode utilizing a single inverter. When the reference
fundamental exceeds the capabilities of a single inverter (that is,
the modulation index is more than 0.57), one inverter operates
in ten-step mode, and the other is multi-frequency space vector
modulated. As a result, the converter is operated in multilevel
mode. The multi-frequency modulated inverter is used to add
the required value to the fundamental voltage and eliminate
any low-order harmonics created by the ten-step mode inverter.
The method has been verified by simulation and experimental
investigation.
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