
PAPERS

A Space-Vector Modulation Scheme for Multilevel Open-End Winding Five-Phase Drives (Invited Paper) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. Levi, I. N. W. Satiawan, N. Bodo, and M. Jones 1

Design and Analysis of a Slope Voltage Control for a DFIG Wind Power Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Martı́nez, P. C. Kjær, P. Rodriguez, and R. Teodorescu 11

An Improved Lead–Acid Battery Pack Model for Use in Power Simulations of Electric Vehicles . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .R. Carter, A. Cruden, P. J. Hall, and A. S. Zaher 21

Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. A. Pereira, C. C. Scharlau, L. F. A. Pereira, and S. Haffner 29

Detection of Demagnetization Faults in Surface-Mounted Permanent Magnet Synchronous Motors by Means of the
Zero-Sequence Voltage Component . . . . . . . . . . . . . . . . . . . . . . . . . . J.-C. Urresty, J.-R. Riba, M. Delgado, and L. Romeral 42

Novel Electromagnetic Design for a Precision Planar Positioner Moving Over a Superimposed Concentrated-Field Magnet
Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. H. Nguyen and W.-J. Kim 52

Loss Distribution on Solid Pole Plates of Wound-Rotor Synchronous Motors Fed From Inverters Using Direct Torque
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. Shisha, C. Sadarangani, and H.-P. Nee 63

An Active–Reactive Power Method for the Diagnosis of Rotor Faults in Three-Phase Induction Motors Operating Under
Time-Varying Load Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .S. M. A. Cruz 71

An In Situ Efficiency Estimation Technique for Induction Machines Working With Unbalanced Supplies . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. G. Siraki and P. Pillay 85

Effect of Wind Speed on Wind Turbine Power Converter Reliability . . . . . . . . . . . . . . . . . . . . . . . . K. Xie, Z. Jiang, and W. Li 96
A Novel Method for Identifying Parameters of Induction Motors at Standstill Using ADALINE . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Bechouche, H. Sediki, D. Ould Abdeslam, and S. Haddad 105
A Novel and Comprehensive Performance Analysis of a Single-Phase Two-Winding Self-Excited Induction Generator

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. S. Murthy, B. Singh, and V. Sandeep 117
Steady-State Calculation and Online Monitoring of Interturn Short Circuit of Field Windings in Synchronous Machines

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Hao, Y. Sun, A. Qiu, and X. Wang 128
A Novel Approach to Saturation Characteristics Modeling and Its Impact on Synchronous Machine Transient Stability

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Hamidifar and N. C. Kar 139
Test Specimen Shape Considerations for the Measurement of Rotational Core Losses . . . . . . . .N. Alatawneh and P. Pillay 151

(Contents Continued on Back Cover)



(Contents Continued from Front Cover)

An Induction Machine Emulator for High-Power Applications Utilizing Advanced Simulation Tools With Graphical User
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O. Vodyakho, M. Steurer, C. S. Edrington, and F. Fleming 160

Power Losses in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic
Modules Due to Partial Shading Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Mäki and S. Valkealahti 173
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A Space-Vector Modulation Scheme for Multilevel
Open-End Winding Five-Phase Drives

Emil Levi, Fellow, IEEE, I Nyoman Wahyu Satiawan, Nandor Bodo, Student Member, IEEE, and Martin Jones

(Invited Paper)

Abstract—Open-end winding three-phase variable speed drives
with dual-inverter supply have been extensively investigated for
various applications, including series hybrid powertrains and
propulsion motors. The topology is simple to realize while offering
a higher number of switching states without the need for capacitor
voltage balancing algorithms, when compared to the standard
multilevel converters. This paper extends the open-end winding
concept to a five-phase drive. A relatively simple space-vector mod-
ulation (SVM) algorithm, based on the already well-understood
five-phase two-level drive SVM method, is developed. The proposed
modulation technique has the advantage of being straightforward
to implement and, like its two-level counterpart, is able to generate
output voltages with minimum low-order harmonic content. The
method generates up to 17-level output phase voltage and, there-
fore, offers superior harmonic performance when compared to the
two-level five-phase modulation. The developed scheme is verified
via detailed simulations and experiments, using a five-phase
induction machine operating under open-loop V/f control.

Index Terms—Induction motor drives, multiphase ac drives,
open-end winding, space vector modulation.

I. INTRODUCTION

THE concept of cascading two voltage source inverters
(VSIs), one at each side of an open-end stator winding,

is well known [1]. Typically, two two-level three-phase VSIs
are utilized. Application of such a dual-inverter supply en-
ables drive operation with voltage waveform equivalent to the
one obtainable with a three-level VSI in single-sided supply
mode. Three-phase open-end winding dual-inverter fed drive
systems are currently considered as possible alternative sup-
ply solutions in electric vehicles and hybrid electric vehicles
(EVs/HEVs) [2]–[5], for electric ship propulsion [6], rolling
mills [7], etc. Recently research efforts have been directed to-
ward the use of this supply configuration in renewable electric
energy systems [8].

In applications such as EVs, where dc-link voltage is rather
low and limited, the main reported advantage with respect to
the equivalent multilevel single-sided supply is that a machine
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with a lower current rating can be utilized since the voltage
across phases can be higher when two independent batteries
are used instead of a single one [2], [5]. Assuming that both
inverters are two-level, the number of the switches is the same
as in the equivalent three-level single-sided supply. However,
additional diodes used in the neutral-point-clamped (NPC) VSI
are not needed, leading to a saving in the overall number of
components. Also, the problem of capacitor voltage balancing
does not exist if the supply is two-level at each winding side.
Thus, the implementation cost is slightly lower, when compared
to the equivalent three-level inverter application, and the im-
plementation is simpler. A further important advantage of the
open-end winding topology is much improved fault tolerance,
since in case of a failure in one inverter it can be shut down and
the operation continued with only the other, healthy inverter in
single-sided supply mode.

Multiphase (n-phase) variable-speed drive systems are cur-
rently regarded as another category of potentially viable so-
lutions for the same applications, including EVs/HEVs [9]. A
two-level multiphase VSI is the standard solution, and the ma-
chine winding is star-connected, with an isolated neutral point.
The advantages of multilevel inverters and multiphase drives
complement each other so that it appears to be beneficial to try
to combine them by realizing a multilevel multiphase drive sys-
tem. There are, however, currently very few examples [10]–[21]
of such topologies.

Recently, some research effort has been directed toward the
multiphase open-end winding topology [10]–[14]. An asym-
metrical six-phase induction motor drive has been developed
in [10] and [11]. In [10], the supply is provided by means of two
isolated two-level six-phase VSIs. The goal was in essence low-
order harmonic elimination/reduction rather than the multilevel
operation so that the dual converter is not operated in multilevel
mode. The topology elaborated in [11] uses four three-phase
two-level inverters, with four isolated dc sources, to prevent
circulation of zero sequence currents. The space-vector modu-
lation (SVM) control is performed in essence independently for
the two three-phase windings, using the nearest three-vector ap-
proach in conjunction with the three-level inverter. This study is
focused on controlling the power sharing between the four con-
verters. The five-phase configuration has been examined in [12]
and [13] and a suitable SVM algorithm has been proposed.
In [14], the SVM algorithm developed in [13] is extended to the
seven-phase configuration.

The remaining literature primarily deals with the five-phase
three-level VSI supplied drive in single-sided supply mode

0885-8969/$26.00 © 2011 IEEE
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[15]–[21]. The first SVM techniques for multilevel multiphase
VSIs were based on the simple extension of the three-phase
SVM approaches so that only the three vectors, nearest to the
reference, were utilized. Such an extension from the three-phase
to five-phase system, which divides each sector into four equal
triangles, is given for a three-level inverter in [16]. An optimal
SVM switching strategy, based on modified discrete particle
swarm optimization (PSO), is presented in [15]. In principle, the
number of applied vectors must equal the number of phases [9].
Utilization of three instead of five space vectors during the
switching period disregards this basic rule; consequently, only
the first plane of the multiphase system is controlled. Hence,
numerous low-order harmonics are generated, which map into
the second plane. An SVM method, which controls both planes,
has been developed in [17] for the three-level NPC VSI sup-
plied five-phase drive and it was extended to the seven-phase
case in [18]. The SVM method is complicated, particularly the
subsector identification, since each 36◦ sector is partitioned into
ten subsectors in [17]. A different approach to the SVM of
multilevel multiphase systems is given for a general case of an
m-level, n-phase VSI in [19] and [20]. The algorithm is based
on the considerations of the multidimensional (n-dimensional)
space and, therefore, does not include decomposition of the n-
dimensional space into 2-D planes. A somewhat similar method,
in the sense that decomposition into 2-D planes is not utilized,
is the one in [21], where a multiphase multilevel pulse width
modulation (PWM) is developed using n single-leg modulators.

Theoretical principles of the SVM algorithm, considered
here, have been originally developed by the authors in [13]
for the five-phase open-end winding configuration. This paper
enhances the work of [13] by providing an in-depth analysis of
the SVM subsectors, results of a detailed simulation study of
the drive system, and experimental results collected from the
laboratory prototype of an open-end five-phase induction motor
drive. The method is relatively straightforward to understand and
implement since it is based on the previously developed SVM
method for two-level five-phase converters. General properties
of the five-phase ac motor drives with sinusoidal winding dis-
tribution are at first reviewed, along with an available two-level
SVM algorithm for a five-phase two-level VSI [22], which uses
two large and two medium active space vectors per switching
period in order to minimize low-order harmonics. Next, mathe-
matical model of the open-end winding topology is given, along
with mapping of the space vectors that are of interest into the
torque-producing 2-D subspace. The performance of the open-
end winding five-phase drive is investigated and verified using
detailed simulation and experimental results.

II. PRELIMINARY CONSIDERATIONS

Prior to considering the SVM schemes for the open-end wind-
ing topology, it is beneficial to review the basic relationships,
which govern the performance of five-phase drives and the cor-
responding two-level SVM technique for a five-phase VSI. A
five-phase machine with near-sinusoidal magnetomotive force
distribution can be modeled in two 2-D subspaces, termed α–β
and x–y subspaces [9]. It can be shown that only current har-

Fig. 1. Two-level five-phase VSI space vectors in the α–β and x–y planes.

monic components, which map into the α–β subspace develop
useful torque and torque ripple, whereas those that map into
the x–y subspace do not contribute to the torque at all. Such a
multiphase machine presents extremely low impedance to all
nonflux/torque producing supply harmonics and it is, therefore,
mandatory that the supply does not generate these harmonics.
What this means is that the design of a five-phase PWM strategy
must consider simultaneously both 2-D subspaces, where the
reference voltage, assuming pure sinusoidal references, is in the
first plane while reference in the other plane is zero. Two-level
five-phase inverters can generate up to 25 = 32 voltage space
vectors with corresponding components in the α–β and x–y sub-
spaces, as shown in Fig. 1. Space vectors are labeled with deci-
mal numbers, which, when converted into binary, reveal the val-
ues of the switching functions of each of the inverter legs. Active
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Fig. 2. Principle of calculation of times of application of the active space
vectors (vectors are shown in the α–β (a) and x–y (b) planes and the reference
in the x–y plane equals zero).

(nonzero) space vectors belong to three groups in accordance
with their magnitudes—small, medium, and large space vector
groups. The magnitudes are identified with indices s, m, and l
and are given as |v̄s | = 4/5 cos (2π/5)Vdc , |v̄m | = 2/5Vdc , and
|v̄l | = 4/5 cos (π/5)Vdc , respectively. Four active space vectors
are required to generate sinusoidal voltages [9]. Suppose that the
reference space vector in the α–β plane is in sector s = 1 [see
Fig. 2(a)]. Two neighboring large and two medium space vectors
are selected. In order to provide zero average voltage in the x–y
plane [see Fig. 2(b)] times of application of active space vectors
become [22]

tal =
2 sin(2π/5)

Vdc
sin

(
s
π

5
− θ

)
|v̄∗|ts

tam =
2 sin(π/5)

Vdc
sin

(
s
π

5
− θ

)
|v̄∗|ts (1)

tbl =
2 sin(2π/5)

Vdc
sin

[
θ − (s − 1)

π

5

]
|v̄∗|ts

tbm =
2 sin(π/5)

Vdc
sin

[
θ − (s − 1)

π

5

]
|v̄∗|ts (2)

where ts is the switching period, θ is the reference position,
s is the sector number, and indices a and b are defined in
Fig. 2(a). Total time of application of the zero space vector
t0 = ts − (tal + tam + tbl + tbm ) is equally shared between
two zero states v̄0 and v̄31 . The maximum peak value of the
output fundamental phase-to-neutral voltage in the linear mod-
ulation region is vmax = Vdc/[2 cos(π/10)] =0.525Vdc (i.e.,
Mmax = 1.05) [22]. Switching pattern is a symmetrical PWM
with two commutations per each inverter leg.

III. FIVE-PHASE OPEN-END WINDING TOPOLOGY

Fig. 3 illustrates the open-end winding structure, based on
utilization of two two-level five-phase VSIs. The two inverters
are identified with indices 1 and 2. Inverter legs are denoted
with capital letters A,B,C,D,E and the negative rails of the two
dc links are identified as N1 and N2. Machine phases are labeled
as a,b,c,d,e. Phase voltage positive direction is with reference to
the left inverter (inverter 1). Using the notation of Fig. 3, phase

Fig. 3. Five-phase machine with dual two-level inverter supply.

voltages of the stator winding can be given as follows:

va = vA1N 1 + vN 1N 2 − vA2N 2

vb = vB 1N 1 + vN 1N 2 − vB 2N 2

vc = vC 1N 1 + vN 1N 2 − vC 2N 2

vd = vD1N 1 + vN 1N 2 − vD2N 2

ve = vE 1N 1 + vN 1N 2 − vE 2N 2 . (3)

Two isolated dc supplies are assumed so that the common mode
voltage (CMV) vN 1N 2 is of nonzero value (the issue of CMV
elimination is not addressed here). The resulting space vectors
in dual-inverter supply mode will depend on the ratio of the
two dc-link voltages. The situation considered further on is the
setting Vdc1 = Vdc2 = Vdc /2. This gives the equivalent of the
single-sided three-level supply with dc-link voltage equal to
Vdc . Since in the five-phase case single-sided supply gives nine
levels in the phase voltages, it is expected that with dual-inverter
supply there will be up to 17 levels in the phase voltage. The
increased number of phase voltage levels is a consequence of
the much greater number of switching states and voltage space
vectors (1024 and 211, respectively), generated by the converter,
when compared to the single-sided supply mode.

Space vectors of phase voltages in the two planes are deter-
mined with

v̄α−β =
(

2
5

) (
va + āvb + ā2vc + ā3vd + ā4ve

)

v̄x−y =
(

2
5

) (
va + ā2vb + ā4vc + ā6vd + ā8ve

)
(4)

where ā = exp(j2π/5). Using (3) and (4), one gets

v̄α−β = v̄α−β (A1B 1C 1D1E 1) − v̄α−β (A2B 2C 2D2E 2)

v̄x−y = v̄x−y (A1B 1C 1D1E 1) − v̄x−y (A2B 2C 2D2E 2) . (5)

When developing a suitable SVM strategy for the dual-inverter
supply and considering (5), it seems logical to adapt the two-
level SVM method for the five-phase VSI of [22] accordingly.
Considering that the two-level SVM method uses only large
and medium active vectors during each switching period and
these can now be applied from each side, there are nine possible
vector combinations, as illustrated in Fig. 4. The nine vector
combinations result in a total of 131 phase voltage space vector
positions. Since there are 22 × 22 = 484 possible switching
states, disregarding the small vectors, there are 353 redundant
switching states. The space vector lengths and positions, in the
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Fig. 4. Five-phase dual-inverter switching combinations.

Fig. 5. Space vectors in α–β plane, created by v̄l − v̄l (�), v̄m − v̄m

(•), v̄m − v̄l , v̄l − v̄m (◦), v̄l − v̄0 , v̄0 − v̄l (♦), v̄m − v̄0 , v̄0 − v̄m (Δ)
combinations.

α–β subspace, generated by these vector combinations, are pre-
sented in Fig. 5 (zero–zero combination is omitted). The high
level of redundancy, which exists, offers great scope for optimiz-
ing the performance of the converter, including power sharing.
The development of such algorithms is, however, beyond the
scope of this paper and is postponed for further work.

IV. SPACE VECTOR MODULATION METHOD

The basic idea of [13] is to decompose the problem of space
vector PWM of the complete system into two subproblems of
lower level complexity, by splitting the total reference into indi-
vidual references of the two inverters. By doing so, it becomes
possible to apply well-known SVM methods for two-level in-
verters [22] to two individual two-level inverters at each end of
the winding. The SVM scheme, suggested in [13] and illustrated
in Fig. 6, uses two identical two-level modulators. It is interest-
ing to note that two-level multiphase SVM methods employ the
same space vectors for the same dwell times as one carrier-based
PWM method [23] and, thus, give the same results in terms of
phase and line-to-line voltages. This equivalent carrier-based
PWM method is the one with offset injection (i.e., zero-sequence
signal injection), defined as vzs = −0.5(max{v∗

j} + min{v∗
j}),

Fig. 6. Unequal reference sharing scheme.

j = a,b,c,d,e. Therefore, it can be concluded that the individual
two-level modulators of Fig. 6 may also use the carrier-based
approach, with inverted carriers for the inverter 2 modulator. It,
thus, follows that the simulation and experimental results pre-
sented in this paper for the SVM are equally applicable to the
carrier-based two-level modulation method with offset injection.

The voltage reference applied to the two-level modulators
is apportioned according to the modulation index M. For clar-
ity, it is beneficial to define individual modulation indices as
M1 = v∗

1/(0.5Vdc1),M2 = v∗
2/(0.5Vdc2). Only inverter 1 is op-

erational up to the point when M = 0.525 (M1 = 1.05). Hence,
the converter operates in two-level mode, since inverter 2 is not
modulated and the VSI is locked in a zero switching state 11111
or 00000, forming a neutral point. It is shown further on that
the performance is significantly improved compared to the two-
level single-sided configuration. When M > 0.525, inverter 1 is
held at M1 = 1.05 and inverter 2 output is modulated as well.
These constraints can be expressed as follows:

0 ≤ M ≤ 0.525

{
M1 = 2M

M2 = 0

0.525 < M ≤ 1.05

{
M1 = 1.05

M2 = 2(M − 0.525).

(6)

Unequally apportioning the voltage reference between the two
modulators leads to multilevel operation and improved harmonic
performance when compared to the equivalent two-level method
in single-sided supply mode [13].

It should be noted that both inverters operate with the same
switching frequency in the range M > 0.525 and hence the
switching losses are equally distributed. In the region of M
up to 0.525, where only one inverter is used, it is possible to
concentrate the switching losses to the same inverter, by keeping
the other one at all times in the zero state, or to equalize the
switching losses by alternating the inverter used to produce the
output voltage.

V. SWITCHING TRAJECTORIES

The space-vectors applied by each inverter are predetermined
for any given sector. However, the applied space vectors seen
from the perspective of the machine will alter depending on
the modulation indices and the angular position within the
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Fig. 7. Normalized inverter leg switching instants for sector 1, M = 0.82.

sector, since the modulation indices are not the same for the
two inverters (except when M = Mmax = 1.05). Fig. 7 shows
the normalized switching instants (turn-ON and turn-OFF in-
stants for inverters 1 and 2, respectively), in the first half of the
switching period, of each inverter leg for every angular position
in the first sector, when M = 0.82 so that M1 = Mmax = 1.05
(thick lines) and M2 = 0.59 (thin lines). These switching in-
stants are determined by the reference signals for each leg. The
border where the change of the switching sequence appears is
governed by the intersection of the thick and thin lines in Fig. 7.
By considering a carrier-based approach and taking into account
the equations of the carriers, the intersection of the switching
instants can be calculated using

tsw−1 =
1 − v∗

l1

4
tsw−2 =

1 + v∗
l2

4
(7)

where v∗
li is the reference signal for leg l (l = 1,2. . .5) of the

inverter i (i = 1,2). The reference signals used in the modulation
are sinusoidal signals with added offset injection, which can be
given in per unit as follows:

v∗
l1 = Mmax[cos (θ − (l1 − 1) α) + vpu

zs ] (8)

v∗
l2 = −M2 [cos (θ − (l2 − 1) α) + vpu

zs ] (9)

where α = 2π/5, and l1 and l2 take the values 1,2. . .5. Offset
injection vpu

zs is determined in the first sector at modulation
index equal to one, where references of phases a and d are at
maximum and minimum, respectively, as

vpu
zs = −0.5 (cos(θ − (1 − 1)α) + cos(θ − (4 − 1)α). (10)

The switching instants are, therefore, determined as follows:

tsw−1 =
1 − Mmax[cos (θ − (l1 − 1) α) + vpu

zs ]
4

(11)

tsw−2 =
1 − M2 [cos (θ − (l2 − 1) α) + vpu

zs ]
4

. (12)

The switching instants have variable values, depending on the
modulation index and angular position of the reference. There is

Fig. 8. Subsectors of sector 1 and the applied space vectors.

Fig. 9. Motor phase voltage and current waveforms with spectra, M = 0.5.

a change in the resultant applied space vectors as switching in-
stants change their order. These situations lead to a transfer from
one subsector to another. Obviously, the borders of the subsec-
tors are determined by having two switching instants equal. A
computer program is developed to calculate M2 for each angular
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Fig. 10. Motor phase voltage and current waveforms with spectra, M = 0.8.

position θ, according to

M2 = Mmax
(cos (θ − (l1 − 1) α) + vpu

zs )
(cos (θ − (l2 − 1) α) + vpu

zs )
. (13)

The corresponding values of M2 are calculated for each θ
and the resulting values can be plotted as a complex number Z̄,
given as follows:

Z̄ = Mejθ M =
(Mmax + M2)

2
. (14)

The resulting subsectors can be seen in Fig. 8 for sector 1.
There are 12 subsectors in multilevel mode, meaning that there
are 12 different switching sequences depending on the modu-
lation index M and the angular position of the reference. The
identification of the subsectors together with the large number
of switching sequences make the creation of a single equivalent
SVM modulator somewhat difficult to achieve.

VI. SIMULATION VERIFICATION

In order to verify the drive’s performance, a series of simu-
lations were undertaken. The phase variable model of the five-
phase induction machine [24] is used and the drive is operated in
open-loop V/f mode. The switching frequency of each inverter
is set to 1 kHz and each dc link is 300 V, giving an effective

Fig. 11. Motor phase voltage and current waveforms with spectra, M = 1.05.

dc-link voltage of 600 V when M > 0.525. Dead time and other
nonideal effects of the inverter are not modeled.

The stator phase voltage and current waveforms and their
spectra are presented in Fig. 9 when M = 0.5. As indicated in
(6), the drive operates with only one inverter being modulated
while the other is clamped to the zero switching vector, hence
the drive operates in two-level mode and the phase voltage has
nine levels. The 50% reduction in the effective dc-link voltage
is evident in the phase voltage waveform. This reduction of
the effective dc-link voltage leads to a much improved voltage
and current total harmonic distortion (THD) when compared
to the equivalant single inverter supplied two-level drive [13].
The situation when M = 0.8 is shown in Fig. 10. Both inverters
are now modulated according to (6) and the effective dc-link
voltage is now 600 V. The phase voltage now comprises 17
levels. The phase voltage levels are equidistanly spaced, i.e., the
step is 60 V. However, it is fair to say that the drive achieves a
pseudomultilevel output since the phase voltage switches to zero
throughout the fundamental cycle, in contrast to a true multilevel
waveform. Fig. 11 illustrates the case when M = 1.05 and both
inverters are operating at the maximum modulation index. The
inverters are now synchronized and the drive operates in two-
level mode with nine levels in the phase voltages. It can be seen
that effective dc-link voltage is again 600 V and the voltage
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Fig. 12. Inverter switching trajectories in the α–β and x–y planes for M = 0.8
with reference angular positions of 9◦ and 17◦ in the α–β plane.

steps are now 120 V. In all cases the spectra indicate that the
low-order harmonic content is the lowest possible and the target
fundamental voltages have been met.

Finally, the switching trajectories of the drive along with
the switching state of each inverter, for the case when M =
0.8 and the reference angular position is θ = 9˚ and θ = 17◦

in sector 1 of the α–β plane, are shown in Fig. 12. These
positions correspond to the reference being in subsectors 9 and
3 of Fig. 8, respectively. The vectors are numbered in the same
manner as in Fig. 1, the upper number being inverter 2 and the
lower number inverter 1. It can be seen that nine active vectors
are applied during each switching period. As expected, the
switching trajectory changes with inverter 2 no longer applying
a zero vector when α = 17◦ and the vector 15–16 is no longer
applied and is replaced with vector 31–24 from inverters 2
and 1, respectively. Further simulations show that five active
vectors are applied when the reference coincides with the sector
borders (when θ = k·36◦, k = 0,1,2. . .9).

VII. EXPERIMENTAL VERIFICATION

The experimental results are obtained using two custom built
five-phase two-level VSIs and a four-pole five-phase induction
motor. Each stator phase consists of two half-windings, which
can be connected in series or in parallel [25]. In this study the
half-windings are series-connected. Parameters of this motor

Fig. 13. Outlay of the experimental setup.

Fig. 14. Experimental results: stator phase voltage and current with spectra
when M = 0.5.

have been used in the simulation study of Section VI. The in-
verters are controlled using a dSpace DS1006 processor board.
The dSpace module is connected to the VSIs via a dSpace
DS5101 digital waveform unit. Both VSIs are fed with iso-
lated three-phase 212 V rms line-to-line voltage, through diode
bridge rectifiers. The outlay of the experimental setup is shown
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Fig. 15. Experimental results: stator phase voltage and current with spectra when M = 0.8 (a) and M = 1.05 (b).

in Fig. 13, while a photograph is given in Fig. A1. The motor
is controlled in open-loop V/f mode with the maximum modu-
lation index (M = 1.05) being reached when the fundamental
frequency is 52.5 Hz. The switching frequency of each inverter
is 1 kHz and the dead time is approximately 6 μs. The phase
voltages are measured using a Tektronix digital oscilloscope in
differential mode and a voltage divider, which gives an atten-
uation of 52. The current measurements are recorded using a
Tektronix current probe and a HP35665A dynamic signal ana-
lyzer. The spectra are calculated using MATLAB software.

Fig. 14 depicts the experimental results obtained when M =
0.5 and the drive operates in two-level mode. It can be seen that
the effective dc-link voltage is approximately 300 V. The phase
voltage comprises nine levels and the target fundamental has
been met. Performance of the drive when M = 0.8 and M = 1.05
is presented in Fig. 15. The drive now utilizes both inverters, so
the effective dc-link voltage is approximately 600 V. When M =
0.8, the drive operates in multilevel mode. Upon inspection, 15
voltage levels can be identified. This is less than indicated by
the simulation results; however, dead time and other nonlinear
effects are ignored in the simulations and can account for the
missing levels. Overall the experimental results agree very well
with the simulation results. Some small low-order harmonics
(in particular, the third) can be seen in the voltage and current

spectra, which are again a consequence of the nonideal nature of
the experimental setup (dead-time effect, as discussed in [25]).

VIII. CONCLUSION

This paper has presented an SVM method for the dual-inverter
five-phase open-end winding topology, which is relatively easy
to implement. The scheme utilizes two standard five-phase two-
level SVM modulators, one for each inverter, and apportions
the voltage reference unequally between the two inverters. As
long as the total modulation index is M ≤ 0.525, only one
inverter output is modulated while the other inverter is held
in zero state. Once when M > 0.525 both inverter outputs
are modulated, with inverter 1 held at its maximum modula-
tion index (M1 = 1.05). The performance of the five-phase
open-end winding drive has been verified by simulation and
experimentally. The results confirm that the load phase volt-
age waveform has an increasing number of levels, from only
nine when just inverter 1 is operational (with inverter 2 held in
zero state) up to, theoretically, 17 levels when both inverters are
operational.

Finally, it should be noted that, although V/f control was
studied here, the principle of SVM is directly applicable to all
vector control schemes, which operate with current control in
the rotating reference frame so that the control system output
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Fig. A1. Experimental setup.

is the stator voltage reference. It is only necessary to apportion
the total stator voltage reference using (6) in order to realize the
vector controlled operation.

APPENDIX

The experimental setup is shown in Fig. A1, at the top of the
page.
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