Part of **SPRINGER NATURE**

PROCEEDINGS | JOURNALS | BOOKS

Search

Series: Advances in Engineering Research

Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)

PROCEEDINGS OF THE FIRST MANDALIKA INTERNATIONAL MULTI-CONFERENCE ON SCIENCE AND ENGINEERING 2022, MIMSE 2022 (CIVIL AND ARCHITECTURE)

<

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

>

Authors

I Dewa Made Alit Karyawan^{1, 2, *}, Didi S. Agustawijaya^{1, 2}, Ria Restu Marlaninstyas², Made Mahendra^{1, 2}, Hasyim¹, Fera Fitri Salsabila¹

- ¹ Department of Civil Engineering, University of Mataram, Mataram, Indonesia
- ² Masters Program of Civil Engineering, University of Mataram, Mataram, Indonesia
- * Corresponding author. Email: dewaalit@unram.ac.id

Corresponding Author I Dewa Made Alit Karyawan

Available Online 23 December 2022.

Keywords

flexible pavement; heavy terrain; rigid pavement; Tanamori road; transporta time

Abstract

Tanamori, West Manggarai, East Nusa Tenggara, as a tourism destination area development in Indonesia needs to be supported by the existence of roads as the main means of its development. The road plan is in an area with heavy terrain so it takes a long transportation time. The limited time for completion of work with severe terrain conditions affects the selection of the appropriate type of pavement to be applied. Based on the location conditions and several previous studies, it is necessary to conduct research to determine the type of pavement that is suitable for use. The two types studied are flexible pavement and rigid pavement. The benchmark of the study is based on technical considerations regarding the advantages and disadvantages of applying this type of road pavement in the field. The results showed that flexible and rigid pavements were possible, but based on the difficulty of implementation and execution of the work, rigid pavements were considered more suitable for construction work time. Rigid pavement structure with pavement with 20 cm thick concrete slabs, with joints. D16 T bar for longitudinal joint reinforcement and D33, 450 mm wooden bar for transverse joint reinforcement.

Copyright

© 2023 The Author(s)

Open Access

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Download article (PDF)

Volume Title

Proceedings of the First Mandalika International Multi-Conference on Science a... Engineering 2022, MIMSE 2022 (Civil and Architecture)

Series

Advances in Engineering Research

Publication Date 23 December 2022

ISBN 10.2991/978-94-6463-088-6_3

ISSN 2352-5401

DOI 10.2991/978-94-6463-088-6_3 How to use a DOI?

Copyright © 2023 The Author(s)

Open Access

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License

(http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Cite this	article
-----------	---------

ris
enw

11		
b)1	b

```
TY - CONF
AU – I Dewa Made Alit Karyawan
AU - Didi S. Agustawijaya
AU - Ria Restu Marlaninstyas
AU
   - Made Mahendra
   - Hasyim
AU
   - Fera Fitri Salsabila
AU
PY - 2022
DA - 2022/12/23
TI - Review on the Rigid Pavement Design for the Tanamori Road in the
Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province -
Indonesia
BT - Proceedings of the First Mandalika International Multi-Conference on
Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)
PB - Atlantis Press
SP - 15
EP - 23
SN - 2352-5401
UR - https://doi.org/10.2991/978-94-6463-088-6_3
D0 - 10.2991/978-94-6463-088-6_3
ID - DewaMadeAlitKaryawan2022
ER
   _
```

COPY TO CLIPBOARD

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

PROCEEDINGS

- ▶ JOURNALS
- ▶ BOOKS
- ▶ POLICIES
- ▶ MANAGE COOKIES/DO NOT SELL MY INFO

Home Privacy Policy Terms of use

Copyright © 2006-2023 Atlantis Press – now part of Springer Nature

► NEWS

► CONTACT

► SEARCH

Part of **SPRINGER NATURE**

PROCEEDINGS | JOURNALS | BOOKS

Search

Series: Advances in Engineering Research

Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)

ARTICLES

Search

+ Advanced search

SEARCH

22 articles

Proceedings Article

Peer-Review Statements

Buan Anshari, Mohammed Ali Elsageer, Hilton Ahmad, Wen-Shao Chang

All of the articles in this proceedings volume have been presented at the 1st MIMSE 2022 on September 14, 2022 in Mataram, Indonesia. These articles have been peer reviewed by the members of the Scientific Committee and approved by the Editor-in-Chief, who affirms that this document is a truthful description...

Article details

Download article (PDF)

Proceedings Article

Application of the Adaptive Neuro Fuzzy Inference System (ANFIS) to Predict Ultimate Bearing Capacity of Footing on Granular Soil

Ngudiyono, Tri Sulistyowati

The ultimate bearing capacity is an important parameter in the footing foundation design. Several classical methods are often used to analyze the bearing capacity of a footing foundation. However, the results of this analysis always give less accurate results than the experiment. In this manuscript,...

Article details

Download article (PDF)

Proceedings Article

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

I Dewa Made Alit Karyawan, Didi S. Agustawijaya, Ria Restu Marlaninstyas, Made Mahendra, Hasyim, Fera Fitri Salsabila

Tanamori, West Manggarai, East Nusa Tenggara, as a tourism destination area development in Indonesia needs to be supported by the existence of roads as the main means of its development. The road plan is in an area with heavy terrain so it takes a long transportation time. The limited time for completion...

- Article details
- Download article (PDF)

Proceedings Article

Hydraulic Turbulence Caused by Ship Movement and Slope Stability at the Juncture of Dredging and Reclamation

Sudipta Chakraborty, A. R. Kambekar

For accommodating deep drafted vessels dredging at the vessel maneuvering area to the required depth as well as deepening the berth pocket of the upcoming jetty also became necessary. Improvement of strength of the reclaimed ground became essential to cater to the future loads of container stacks, gantry...

Article detailsDownload article (PDF)

Proceedings Article

Traffic Management Simulation to Improve Tanah Aji Intersection Road Network Performance

Fera Fitri Salsabila, Desi Widianty, I Dewa Made Alit Karyawan, Hasyim

This paper is prepared to find out alternative traffic management that can reduce congestion on the Road Network at Tanah Aji Intersection. This research method is carried out by collecting primary and secondary data. Primary data includes field surveys, road geometry, traffic flow volume, and traffic...

Article details Download article (PDF)

Proceedings Article

Comparative Investigations on Reactive Powder Concrete with and Without Coarse Aggregate

Hussein Kareem Sultan, Alaa S. Al-Husainy, Buan Anshari

Crushed dolomite with a nominal size of 8 mm and fine quartz sand with a nominal size of 2 mm were used to produce reactive powder concrete (RPC) this study. The compressive strength is comparable to that of standard RPC with a maximum aggregate size of less than 0.6 mm. The use of crushed dolomite...

Article details

Download article (PDF)

Proceedings Article

Assessment Factor of Strength Development for Normal, High Strength, and Lightweight Concretes

Ni Nyoman Kencanawati, I Nyoman Merdana, Ngudiyono, Ricko Fachri Afriandi

Development in the construction sector continues to increase. The most common building material nowadays is concrete. Although normal concrete is often is being used, at this time high strength concrete and lightweight concrete have also been widely used in construction. In the codes for concrete materials,...

- Article details
- Download article (PDF)

Proceedings Article

Constitutive Model of Concrete Frame Structure Under Localized Fire Simulations

Suryawan Murtiadi, Made Mahendra, I Dewa Made Alit Karyawan, Akmaluddin Akmaluddin, Eko Pradjoko

In recent decades, special considerations have been given to the use of fire safety analysis on modern concrete buildings. The considerations include the stability of building which providing sufficient time for the occupants to evacuate and for firefighting. This paper is mainly concerned with the performance...

- Article details
- Download article (PDF)

Proceedings Article

Review of the 2018 Lombok Earthquake, Indonesia, and Its Impact from Previous Studies

Achmad Fajar Narotama Sarjan, Ismail Hoesain Muchtaranda

A series of strong earthquakes struck Lombok Island on 29 July (M 6.4), 5 August (M 7.0), 9 August (M 5.9), and 19 August (M 6.3 and M. 6.9) 2018 which led to severe damage with more than 500 deaths, 1,833 injured and devastated 186,010 houses (National Disaster Mitigation Agency). Lombok Island is categories...

Article details

Download article (PDF)

Proceedings Article

Disaster Mitigation Plan Based Flood Event Occurred on January 30th, 2021 in Kuta-Mandalika, Lombok, Indonesia

Atas Pracoyo, Ery Setiawan, Muh. Bagus Budianto, Eko Pradjoko

There was flood event that occurred on January 30th, 2021 in Kuta Mandalika Lombok. There were many infrastructure damages but no injured people were reported. According to information, this January flood is the biggest flood that occurred in Kuta Lombok. The research method consists of is field survey...

Article details Download article (PDF)

Proceedings Article

The Application of Two Tsunami Inundation Model in the Kuta Mandalika Coast

Eko Pradjoko, Alan Maulana Karisma, Atas Pracoyo, Bambang Harianto, Agus Suroso, Yusron Saadi

The analysis of tsunami inundation is the part of tsunami threat study. In the manual of the Disaster Prevention National Agency (DPNA), the tsunami inundation can be analyzed by the Berryman Method. The method calculates the tsunami wave height reduction when inundating the land based on the surface...

- Article details
- Download article (PDF)

Proceedings Article

Hybrid Composite Sandwich Panels for Lightweight Housing Components: Concept and Experimental Results

Jauhar Fajrin, Yan Zhuge

Reducing the weight of structures is one of the key factors in maintaining affordable housing costs. The self-weight of a structure, which makes up a significant portion of the total load on a structure, may be decreased by using the appropriate material. Today, a lightweight composite sandwich panel...

Article details Download article (PDF)

Proceedings Article

The Behavior of Two-Way Sandwich Concrete Slab with Aspect Ratios Variation Subjected to Central Point Load Akmaluddin Akmaluddin, Suryawan Murtiadi, Ngudiyono, Pathurahman, Suparjo, I Nyoman Merdana

The self-weight of the concrete slab in high-rise building construction significantly affects the risk of structural failure in earthquake-prone areas as the earthquake force is directly proportional to the mass of the building. To reduce the building mass then the sandwich concrete slab is introduced....

- Article details
- Download article (PDF)

Proceedings Article

Exploring People's Reasons of Living in Disaster-Prone Area and Promoting Disaster Risk Reduction in Urban Planning

Deffi Ayu Puspito Sari, Citra Ridhani

Cities among other areas bear the brunt of the impact of climate-related disasters, especially cities that are located in the coastal zone. To build resilient cities, it is necessary to involve disaster risk reduction (DRR) in spatial planning (RTRW) because it has an essential role in both mitigation...

Article details
Download article (PDF)

Proceedings Article

The Influence of Waste Ratio on Waste Consumption Level, Waste Reduction Index, and Growth of Black Soldier Fly Larvae Deffi Ayu Puspito Sari, Darmono Taniwiryono, Novita Indri Pratiwi, Prismita Nursetyowati, Aqil Azizi, Diki Surya Irawan, Insan Harapan Harahap, Maskur

About 80% of the total amount of waste produced is generally organic waste, which is only seen as residual and has no economic value. Currently, the

problem of organic waste is a problem that must be addressed immediately Black Soldier Fly is one of the solutions. This study aims to determine the...

- Article details
- Download article (PDF)

Proceedings Article

Analysis of Building Damage to the Housing Sector Based on Post-North Lombok Earthquake 2018 Investigations

Yaya Fradana, Jauhar Fajrin

A major earthquake with a magnitude of 7.0 on the Richter Scale occurred in the Province of West Nusa Tenggara in 2018. Along with the deaths caused by the earthquake, public infrastructural facilities also sustained significant damage. One of the many losses experienced by the people of West Nusa Tenggara,...

Article detailsDownload article (PDF)

Proceedings Article

Stability of the Meninting Diversion-Spillway Tunnel Constructed into Weak Volcanic Rock Masses Influenced by the Lombok Earthquake 2018

Didi S. Agustawijaya, Tri Sulistyowati, Ausa R. Agustawijaya

The Meninting diversion-spillway tunnel is a part of the Meninting dam project located in West Lombok District. The construction commenced in 2017; then, a series of severe Lombok earthquakes halted the construction for a while in 2018, where some landslides occurred around the site. This possibly caused...

Article details

Download article (PDF)

Proceedings Article

Passenger Satisfaction Measurement with a SERVQUAL Approach and Proposed Improvements to Non Bus Rapid Transit (BRT) Transjakarta Services Poris Plawad Route – Senayan Bundaran

Arief Suwandi, Ratri Kartika

Developing countries tend to have problems in the form of people often encountering the phenomenon of congestion. Public transportation is one of the assessments of the quality level of development of an area or country. The government continues to try to unravel the phenomenon of congestion that occurs....

Article details

Download article (PDF)

Proceedings Article

The Implementation of Community-Based Agrotourism Concept as Sustainable Design in Rebakong-Kayangan Village, North Lombok Regency

Rini Srikus Saptaningtyas, Giska Ayu Pradana Putri Kamase, Noor Oktova Fajriyah, Lee Yoke Lai

The tourism sector is one of the main pillars of a productive economy that has enormous potential to give a positive impact extensively. The Government of North Lombok Regency, West Nusa Tenggara Province utilized this sector to improve not only economic aspects but also the impact on social, cultural,...

Article details

Download article (PDF)

Proceedings Article

Study on the Linear Buckling Behaviour of Two Local Bamboo Species Under Different Length and Boundary Conditions via Finite Element Analysis (FEA)

Hazrina Mansor, Mohammad Rosnizam Lop, Buan Anshari

Bamboo is the world's fastest-growing grass species. Although bamboo is a resilient and sustainable engineering material, its use in the building sector has been limited. The limitation in the usage is most likely due to its nature, which might vary depending on the species and origin, creating a challenge...

Article details

Download article (PDF)

Proceedings Article

The Development of the SARIMA Model for Flood Disaster Resilience

Heri Sulistiyono, Faisal Irshad Khan, Humairo Saidah, Ery Setiawan, I Wayan Yasa, I Wayan Suteja, Salehudin, I Dewa Gede Jaya Negara

Some agencies in the world warned that the recent flood disaster has been getting worse all over the world. Engineers have studied flooding and its impact with various simulation models. Yet, there is no model considered the best for all estimations of flood disasters in the future. In this paper, the...

- Article details
- Download article (PDF)

Proceedings Article

Material Properties and Fracture Energy of Kenaf FRP Composites Zaim Omar, Sugiman Sugiman, Mustafasanie M. Yussof, Hilton Ahmad

The incorporations of synthetic fibers have raised worrying concerns, so an alternative material which is inexpensive and ecological resources is proposed. Kenaf fiber has high tensile modulus and elongation at break and potentially to be used as reinforcing fibers in FRP composites to replace synthetic...

Article details

Download article (PDF)

in

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

PROCEEDINGS
JOURNALS
BOOKS
POLICIES
MANAGE COOKIES/DO NOT SELL MY INFO

Home Privacy Policy Terms of use

Part of **Springer Nature**

PROCEEDINGS | JOURNALS | BOOKS

Search

Series: Advances in Engineering Research

Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture)

ORGANIZERS

Advisors

Bambang Hari Kusumo

University of Mataram, Indonesia

Arief Kusuma A. P.

Universitas Esa Unggul, Indonesia

Chairman

Nur Kaliwantoro University of Mataram, Indonesia

Vice Chairman

Heri Wijayanto University of Mataram, Indonesia

Organizing Committee

Jauhar Fajrin University of Mataram, Indonesia

Nurchayati University of Mataram, Indonesia

Editors

Buan Anshari University of Mataram, Indonesia

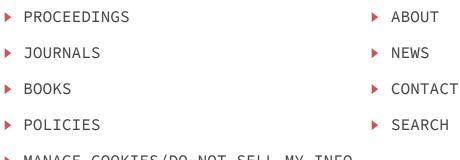
Mohammed Ali Elsageer

Sirte University, Libya

Hilton Ahmad Universiti Tun Hussein Onn Malaysia, Malaysia

Wen-Shao Chang University of Sheffield, UK

Scientific Committee


Mohd Remy Rozainy Universiti Sains Malaysia, Malaysia

Akmaluddin University of Mataram, Indonesia

Atlantis Press

Atlantis Press – now part of Springer Nature – is a professional publisher of scientific, technical & medical (STM) proceedings, journals and books. We offer world-class services, fast turnaround times and personalised communication. The proceedings and journals on our platform are Open Access and generate millions of downloads every month.

For more information, please contact us at: contact@atlantis-press.com

▶ MANAGE COOKIES/DO NOT SELL MY INFO

Home Privacy Policy Terms of use

Copyright © 2006-2023 Atlantis Press – now part of Springer Nature

in

Review on the Rigid Pavement Design for the Tanamori Road in the Labuan Bajo Resort Area of West Manggarai in East Nusa Tenggara Province – Indonesia

I Dewa Made Alit Karyawan^{1,2}(⊠), Didi S. Agustawijaya^{1,2}, Ria Restu Marlaninstyas², Made Mahendra^{1,2}, Hasyim¹, and Fera Fitri Salsabila¹

¹ Department of Civil Engineering, University of Mataram, Mataram, Indonesia dewaalit@unram.ac.id

² Masters Program of Civil Engineering, University of Mataram, Mataram, Indonesia

Abstract. Tanamori, West Manggarai, East Nusa Tenggara, as a tourism destination area development in Indonesia needs to be supported by the existence of roads as the main means of its development. The road plan is in an area with heavy terrain so it takes a long transportation time. The limited time for completion of work with severe terrain conditions affects the selection of the appropriate type of pavement to be applied. Based on the location conditions and several previous studies, it is necessary to conduct research to determine the type of pavement that is suitable for use. The two types studied are flexible pavement and rigid pavement. The benchmark of the study is based on technical considerations regarding the advantages and disadvantages of applying this type of road pavement in the field. The results showed that flexible and rigid pavements were possible, but based on the difficulty of implementation and execution of the work, rigid pavements were considered more suitable for construction work time. Rigid pavement structure with pavement with 20 cm thick concrete slabs, with joints. D16 T bar for longitudinal joint reinforcement and D33, 450 mm wooden bar for transverse joint reinforcement.

Keywords: flexible pavement \cdot heavy terrain \cdot rigid pavement \cdot Tanamori road \cdot transportation time

1 Introduction

The function of road pavement is to provide services to transportation facilities, consisting of a layer located between the sub-grade and the wheels of the vehicle. During the service period, it is hoped that no significant damage will occur. The road pavement layer consists of 90–95% aggregate by weight of the pavement mixture, with asphalt or cement binders to form a waterproof pavement. Pavement with asphalt binder is called flexible pavement, and pavement using cement is called rigid pavement. Pavement layers by combining rigid pavement and flexible pavement are called composite pavements [1]. The selection of the type of pavement requires a technical study so that its use is in accordance with the location where the road is built. Especially concerning the terrain for the transport of certain materials. So that the implementation of the work becomes easy, efficient in terms of cost and processing time and does not forget the existing design criteria [2]. In relation to road function, other considerations such as road class (relation to traffic volume and load), drainage conditions, design life, initial construction costs, ease of maintenance and repair [3]. The plan for the construction of the Tanamori road, West Manggarai, is in an area with tough terrain so it takes a long time to travel. This affects the selection of the appropriate type of pavement to be applied. Based on the location and several previous studies, it is necessary to conduct a study to determine the type of pavement that is suitable for use. Technical considerations regarding the advantages and disadvantages of pavement type applications at work sites are used as a benchmark for the study.

2 Introduction

2.1 Type of Pavement

Road pavement is a layer that is located between the sub-grade layer and the vehicle wheels which functions to provide services to transportation facilities and during the service period it is hoped that no damage will occur. Based on the binding material, road pavement construction is divided into flexible pavement, rigid pavement, and composite pavement.

Flexible pavement is a pavement that uses asphalt as its binding material and the pavement layer is to carry and spread the traffic load to the sub-grade. Rigid pavement is a pavement that uses cement as its binding material, either with or without reinforcement, which is placed on the sub-grade with or without a sub-base layer, and the traffic load is mostly borne by the concrete slab. While composite pavement is rigid pavement combined with flexible pavement, in the form of flexible pavement on rigid pavement or vice versa [4].

2.2 Flexible Pavement Characteristics

There are several factors that affect the quality of flexible pavement, one of which is the compaction temperature of the mixture during the compaction process at the project site. In a project where the mixing site (AMP) is far from the laying and compaction site it will have lower quality than the one near it, because it takes longer to travel to the project site. So, there is a decrease in temperature. Factors that greatly affect the decrease in the temperature of hot mix asphalt are delivery time, delivery distance between AMP and the overlay location, travel time and delays, weather, and density of asphalt covering tarpaulin [5].

The farther the distance to transport the hot asphalt sample, the lower the temperature will be. When the temperature drop is greater, the resultant density of the mixture will be less than the required optimum temperature [6].

2.3 Rigid Pavement Characteristics

Cement concrete pavement is a structure consisting of continuous (non-continuous) cement concrete slabs without or with reinforcement or continuously with reinforcement, located above the sub-base or subgrade without or with an asphalt surface layer. In cement-concrete pavement, the bearing capacity of the pavement is mainly obtained from the concrete slab. The nature, bearing capacity and uniformity of the sub-grade greatly affect the durability and strength of cement-concrete pavements.

The strength of cement concrete must be expressed in terms of the flexural strength of the age 28 days, which is obtained from the test results of beams with three-point loading (ASTM C-78) which is typically around 3-5 MPa (30-50 kg/cm²). It is recommended that the flexural tensile strength of concrete specified for planning purposes and durability at the age of 28 days should not be less than 4 MPa (40 kg/cm²).

Concrete mixtures made for cement concrete pavements must have good workability in order to provide ease of work without segregation or bleeding and after the concrete has hardened it meets the criteria for strength, durability, water resistance and driving safety cement-concrete, the bearing capacity of the pavement is mainly obtained from the concrete slab. The nature, bearing capacity and uniformity of the subgrade greatly affect the durability and strength of cement concrete pavements [4].

Rigid pavements have advantages over flexible pavements in terms of lower construction life cycle costs due to minimal maintenance, more durable and stronger, and lower environmental impact. The disadvantages are that the initial costs and construction repairs are quite high, it takes time to be strong enough to pass, it is not suitable for unstable road construction or unsettled utilities, inconvenient (roughness, joints), and glare due to the color of the pavement which tends to white [7][8].

2.4 Reason for Choosing Pavement

Several factors must be considered in choosing the type of pavement [1], as follows:

a. Technical Factor

Technical factor is the most dominant factor to measure roadworthiness. Technical factors include weather resistance, soil movement resistance and resistance to traffic changes.

b. Non-Technical Factors

The non-technical factor that affects the feasibility of a road pavement is the maintenance period factor related to the speed or duration of a construction requiring repair.

c. Fund Availability Factor

The availability of resources is related to the availability of funds. The two nontechnical factors indicate that as few maintenances and repairs are carried out as possible, it means that road construction is considered better and the availability of resources, especially funds, is a very decisive factor in determining whether a construction is chosen to be built or not. Because basically funds are always an obstacle to the availability of road construction budgets in Indonesia. 18 I Dewa Made Alit Karyawan et al.

3 Results and Discussion

3.1 Technical Overview of Field Conditions

The position of the pavement is in the embankment and excavation. Figure 1 shows the Typical cross section of the embankment area, and Fig. 2 is the Cross section of the excavation area.

- Flexible pavement material
 - a. AC-WC 50 mm
 - b. AC-Base 75 mm
 - c. Tack coat 0.35 Liter /m2 [9]

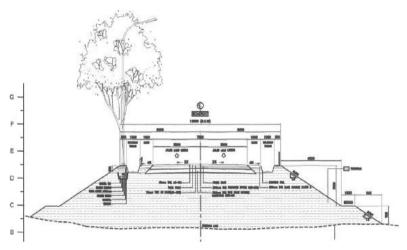


Fig. 1. Typical cross section of the embankment area

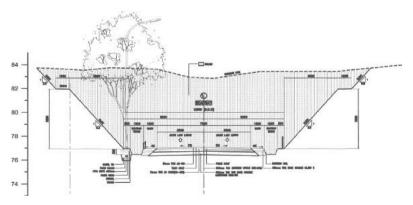


Fig. 2. Cross section of the excavation area

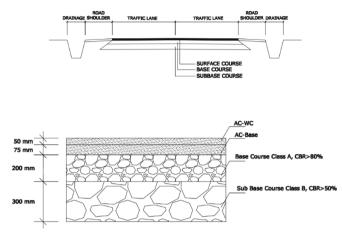


Fig. 3. Structure of flexible pavement layers

- d. Prime coat 0.15 Liter/m2
- e. Base course Class A (CBR>80%) 200 mm
- f. Sub base course Class B (CBR>50%) 300 mm
- Rigid pavement material (concrete)

a. Fc 10 MPa

- b. Fc 25 MPa
- Specific gravity of asphalt concrete 2.3 ton/m3 [9]
- Travel time from Asphalt Mixing Plant (AMP) to the job site is 3 h, with difficult terrain and many steep climbs.
- CBR of subgrade based on test results between 3%-30%.

3.2 Flexible Pavement Construction Design

The results of the flexible pavement design for the location of the Tanamori road, West Manggarai are shown in Fig. 3.

The flexible pavement structure is shown in Fig. 3. Based on the type and thickness of the pavement layer, with Eq. (1), the Pavement Thickness Index (ITP) value is 11,325. [10].

$$ITP = a1.D1 + a2..D2 + a3.D3 + a4.D4$$
(1)

$$ITP = 0.4.5.0 + 0.35.7.5 + 0.14.20 + 0.13.30 = 11.325$$

where:

a1, a2, a3, a4 is the number of the relative strength of the material, namely: a1 = AC-WC = 0.40 a2 = AC Base = 0.35a3 = Base course Class A = 0.14a4 = Base course Class B = 0.13D1, D2, D3. D4 is the thickness of the pavement layer, i.e.: D1 = AC-WC = 50 mm (5.0 cm)D2 = AC Base = 75 mm (7.5 cm)D3 = Base course Class A = 200 mm (20 cm)D4 = Base course Class B = 300 mm (30 cm)

With the value of ITP = 11,325, the road designation is for moderate to heavy traffic. The pavement structure is suitable for subgrade conditions consisting of original soil, excavation and embankment with adequate bearing capacity. However, the high slope of the road in the longitudinal direction makes it difficult to move the compactor and material dropping. It takes about 3 h to transport hot mix asphalt to the job site from AMP.

3.3 Rigid Pavement Construction Design

Based on the results of the analysis of the flexible pavement design, an analysis of the rigid pavement design was carried out. The ability of rigid pavement structures must be more or at least the same as flexible pavements in supporting traffic loads.

The study of the construction strength is carried out based on the rigid pavement planning guidelines, as follows [11]:

- a. Analysis of the type and thickness of the foundation Foundation with lean concrete (LC), with flexural tensile strength = 10 MPa, with a thickness of 100 mm (10 cm), on subgrade CBR 3% get an effective CBR of 20%.
- b. Concrete slab thickness analysis Concrete slabs (flexural tensile strength = 25 MPa) with a thickness of 20 cm (200 mm) are joined. The joint distance is 4 meters (4000 mm) in the transverse direction and the longitudinal joint is at the center line of the pavement (see Fig. 5). So the dimensions of the concrete slab are length = 4 meters, width = 3.5 meters, and thickness of 20 cm. Safe against fatigue and erosion. Concrete slab thickness analysis.
- c. Joint reinforcement analysis

Reinforcement between transverse joints (transversals) using D33 dowel length 450 mm. Plain reinforcement is used with one end clamped, and the other end can move freely. While the longitudinal direction (longitudinal) connection uses screw reinforcement, clamped, with T Bar D16 and a length of 750 mm, meets the requirements [12].

The rigid pavement design for the Tanamori road is shown in Figs. 4 and 5.

The results of the analysis show that the rigid pavement construction design can be used, and is safe if the materials and implementation methods are in accordance with the specified procedures.

Based on field conditions, where rigid pavement work is more ready because it is supported by equipment and concrete mixing units. However, with subgrade which

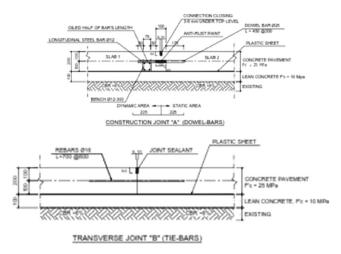


Fig. 4. The structure of rigid pavement layers

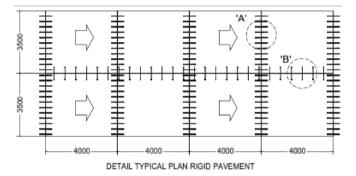


Fig. 5. Detail typical plan rigid pavement.

generally has good bearing capacity (high average CBR), flexible pavement is more suitable.

3.4 Comparative Analysis of the Use of Flexible and Rigid Pavement Construction Design

Analysis of the selection of the use of rigid pavement types with flexible pavement, to be applied at the Tanamori road location based on the travel time from the AMP (Asphalt Mixing Plan) to the job site is 3 h. Estimated decrease in temperature of 3O per hour, then there is a decrease in temperature of 12O. This will make the temperature of the asphalt mixture when it arrives at the site already below the softening point (does not meet requirements for compaction).

The large longitudinal slope makes it difficult for maximum compaction of the asphalt mixture. Besides the terrain conditions (steep slope), the compactor also has difficulty maneuvering.

Concrete mixtures made for cement concrete pavements must have good workability in order to provide ease of work without segregation or bleeding and after the concrete has hardened it meets the criteria for strength, durability, water resistance and driving safety cement-concrete, the bearing capacity of the pavement is mainly obtained from the concrete slab. The nature, bearing capacity and uniformity of the subgrade greatly affect the durability and strength of cement concrete pavements [4].

The road being built is a new road to serve tourist area activities, so it is not classified as heavy traffic. However, during construction, heavy vehicles will pass by to transport materials. In general, the subgrade has a good bearing capacity making it suitable for flexible pavement. However, in terms of ease of completion of work (related to time), the use of rigid pavement in this location is more suitable.

4 Conclusions

Based on the results of the analysis and discussion, the conclusions of this study are:

- a. The application of flexible and rigid pavements is possible at the study site, but based on the difficulty of the terrain and the execution of the work, rigid pavements are considered more suitable in relation to the construction time.
- b. The type of rigid pavement structure used is the Join Concrete Pavement type with a concrete slab thickness of 20 cm. Longitudinal joint reinforcement with T Bar D16 and transverse joint reinforcement with Dowel length D33 450 mm.

Acknowledgment. Grateful acknowledgment is addressed to the Department of Civil Engineering, Faculty of Engineering, the University of Mataram for the financial support and facilities provided. Thanks also to PT Bunga Raya Lestari and Indonesia Tourism Development Corporation (ITDC) KEK Labuan Bajo which provided access and data support for this research.

References

- A. Prayogo, H. Suprayitno, and H. Budianto: Penentuan Kriteria Dalam Pemilihan Jenis Perkerasan Pada Dataran Tinggi Di Kabupaten Trenggalek/Determination of Criteria in the Selection of Pavement Types in the Highlands in Trenggalek Regency (in Indonesian). J. Civ. Eng. 33 (1), p. 27 (2018).
- R. Kurniawan, S. Syuhada, and N. Bintang: Kajian Pemilihan Struktur Fondasi Bangunan Empat Lantai (Studi Kasus Desain Gedung GLT 1 dan GLT 3 Institut Teknologi Sumatera)/Study on Selection of Foundation Structures for Four-Story Buildings (Case Study of GLT 1 and GLT 3 Building Designs at the Sumatra Institute of Technology) (in Indonesian). vol. 1, pp. 24–31 (2021).
- 3. Asriadi: Evaluasi Kegiatan Pemeliharaan Jalan ditinjau dari Jenis Perkerasan dan Pola Penanganan di Kabupaten Selayar/Evaluation of Road Maintenance Activities in terms of Pavement Types and Handling Patterns in Selayar District (in Indonesian). (2011).

- 4. S. T. Daksa and C. A. Prastyanto: Analisis Pemilihan Jenis Perkerasan Jalan untuk Perbaikan Kerusakan Perkerasan Jalan di Jalan Harun Thohir, Kecamatan Gresik, Kabupaten Gresik, Jawa Timur/ Analysis of the Selection of Road Pavement Types for Repairing Damage to Road Pavement on Jalan Harun Thohir, Gresik District, Gresik Regency, East Java (in Indonesian). J. Transp. Sist. Mater. dan Infrastruktur 2 (1), p. 11 (2019).
- B. H. Fachturrahman, Susilo: Analisis Pengaruh Jarak Dan Waktu Terhadap Penurunan Temperatur Aspal Campuran Panas/Analysis of the Effect of Distance and Time on Temperature Reduction of Hot Mixed Asphalt (in Indonesian). pp. 187–194 (2021).
- A. Rini, S. Putra, and P. Pratomo: Pengaruh Jarak Penghamparan Terhadap Perubahan Suhu Campuran/Effect of Spreading Distance on Mixture Temperature Changes (in Indonesian). Univ. Lampung 6 (2), pp. 1–11 (2018).
- Sjahdanulirwan: Kelebihan Serta Kekurangan Perkerasan Beraspal dan Beton/ Advantages and Disadvantages of Asphalt and Concrete Pavement (in Indonesian). Puslitbang Jalan dan Jemb., p. 12 (2009).
- D. S. Wiyanti: Keuntungan dan Kerugian Flexible Pavement dan Rigid Pavement/Advantages and Disadvantages of Flexible Pavement and Rigid Pavement (in Indonesian). 12 (2), pp. 12– 18 (2011).
- RAB Pengaspalan Hotmix Begini Caranya hitungnya/Hotmix Asphalt RAB This is how it is calculated (in Indonesian), https://kontraktorjalan.com/rab-pengaspalan-hotmix-begini-car anya-hitungnya/, last accessed: 2020.
- A. Dahu and T. Da: Analysis of Road Flexible Pavement Using Bina Marga Method on Road Area of Aituto – Ainaro (Km 89 + 000 To Km 112 + 000) Timor Leste. 4 (1), pp. 39–45 (2022).
- E. Firgiansyah, P. Prihantono, and D. Daryati: Comparative Study of Rigid Pavement Planning Using Bina Marga 2017 and AASHTO 1993 Methods. J. PenSil 11 (1), pp. 78–91 (2022).
- 12. Kementerian-PUPR: Perencanaan Perkerasan Jalan Beton Semen (Pd T-14-2003)/Cement Concrete Road Pavement Design (in Indonesian) (2003).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

