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Abstract—Monkeypox is a zoonotic infectious disease caused 

by a virus of the orthopoxvirus genus. It can infect humans, 

vertebrates, and arthropods. Transmission to humans occurs 

through direct contact with infected animal body fluids or 

consumption of undercooked meat. Monkeypox cases have been 

reported globally, with thousands of confirmed cases and 

several deaths. Early symptoms include fever, rash, swollen 

lymph nodes, back pain, and headache. Diagnosis can be made 

through physical examination and laboratory tests. Image-

based artificial intelligence technology, specifically the 

EfficientNet-B0 architecture, has been proposed as a solution 

for the classification of monkeypox based on skin lesion images. 

The research aims to compare the performance of EfficientNet-

B0 with other CNN architectures and contribute to the 

development of medical image classification technology. Among 

the models evaluated, the EfficientNet-B0 model emerged as the 

standout performer, achieving an accuracy of 85.12%, 

surpassing the accuracy of other models such as MobileNet 

(63.63%) and InceptionV3 (71.4%). EfficientNet-B0 also 

demonstrated strong sensitivity (78.46%) and impressive 

specificity (91.78%), outperforming other models in these 

metrics. Additionally, despite not surpassing the accuracy of 

ResNet-50 (87.59%), EfficientNet-B0 achieved its accuracy with 

approximately four times fewer parameters, highlighting its 

efficiency in parameter usage and computational resources. 

These results can help improve models and aid in clinical 

decision-making. 
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I. INTRODUCTION 

Monkeypox (Mpox) is a zoonotic infectious disease 
caused by virus infection of the genus orthopoxvirus, family 
Poxviridae, and family Chordopoxvirinae. This virus can 
infect humans, vertebrates, and arthropods [1]. Monkeypox 
transmission to humans occurs through direct contact with 
infected animal body fluids, such as blood, skin lesions, 
mucosa, or through consumption of meat that is not cooked 
properly. Monkeypox is transmitted by animals suspected of 
being primary carriers of the virus [2]. The first case of 
monkeypox was discovered in 1970 in the Republic of the 
Congo. The first outbreak outside of Africa occurred in the 
United States in 2003, causing more than 70 cases of 
monkeypox. Since early May 2022, monkeypox cases have 
been reported in various countries, including endemic and 
non-endemic countries with a total of 71,237 confirmed cases 
in 107 countries, with 26 deaths [3]. 

Early symptoms of monkeypox infection include fever, 
rash that spreads all over the body within 2-3 days, swollen 

lymph nodes, back pain and headache. The rash usually 
appears on various parts of the body such as the face, hands, 
feet, mouth, genital area and eye area [4]. The rash develops 
into lesions with the stages of macules, papules, vesicles, and 
pustules [5]. Diagnosis of monkeypox can be made through a 
physical examination by an expert who sees the typical 
lesions. However, laboratory diagnosis using PCR tests is also 
necessary to confirm infection [6], [7]. 

Several studies have shown the use of image-based 
artificial intelligence technology and expert systems as a 
solution for the diagnosis of monkeypox. However, the use of 
expert systems is less effective because sufferers generally do 
not know in detail the symptoms that arise. Therefore, another 
solution using images is more appropriate, because 
monkeypox causes lesions on the skin that can be recognized 
through images. 

The deep learning Convolutional Neural Network (CNN) 
technique has shown good performance in image-based 
research, including in the diagnosis of monkeypox. Several 
studies have used architectures such as vgg-19 and ResNet50 
with accuracy reaching 93.33% and 82.96% respectively [8], 
[9]. However, ResNet50 has disadvantages in terms of 
computational resource efficiency due to the large number of 
parameters and layers, and is prone to overfitting on small 
datasets [10]. As an alternative, EfficientNet architecture, 
especially the B0 variant, can improve resource efficiency 
while still providing good performance in skin image 
detection and classification tasks [11]–[14]. 

This study aims to classify monkeypox based on skin 
lesion images using the EfficientNet-B0 architecture, a 
Convolutional Neural Network (CNN). The performance of 
EfficientNet-B0 will be compared with similar studies using 
other CNN architectures. It is expected that the results of this 
study will contribute to the development of medical image 
classification technology and enhance clinical decision-
making. 

II. RELATED WORK 

A. Selecting a Template (Heading 2) 

Implementation of EfficientNet-B0 for a monkeypox 
diagnosis system based on skin images refers to several related 
previous studies. The details of several previous studies on the 
image of smallpox monkeys can be seen in Table 1. 

TABLE I.  RECENT MONKEYPOX STUDIES 

Paper Image Type Classifier (s) Accuracy 

VGG-16 81.48 



(Ali et al., 

2022)[9] 

Full body, 

Limbs, Face, 

Trunk 

ResNet50 82.96 

Inception-V3 74.03 

Ensemble 79.26 

(Ahsan et al., 

2022)[15] 

Full body, 

Limbs, Face, 

Trunk 

VGG-16 

(Case 1) 
83 

VGG-16 

(Case 2) 
78 

(Muñoz-

Saavedra et al., 

2022)[8] 

Close skin 

tissue 

VGG-16 91.67 

VGG-19 93.33 

ResNet50 95 

MobileNet-V2 88.33 

EfficientNet-

B0 

90 

 

Ensemble 1 91.67 

Ensemble 2 91.67 

Ensemble 3 98.33 

(Islam et al., 

2022)[16] 

Full body, 

Limbs, Face, 

Trunk 

ResNet50 72 

Inception-V3 71 

DenseNet121 78 

MnasNet-A1 77 

MobileNet-V2 77 

ShuffleNet-V2 79 

SqueezeNet 65 

In a study by Ali et al., classifiers were performed using 
VGG-16, ResNet50, Inception-V3, and Ensemble for image 
classification. The results showed that ResNet50 achieved the 
highest accuracy, namely 82.96%. Another study by Ahsan et 
al. divide the data into two cases. In the first case, the VGG-
16 classifier achieved an accuracy of 83%, while in the second 
case, the accuracy achieved was 78%. This shows that the use 
of VGG-16 can give different results in different situations. 

Munoz et al. conducting research related to the classifier 
of dense skin tissue images. In this study, several classifiers 
were used, such as VGG-16, VGG-19, ResNet50, MobileNet-
V2, and EfficientNet-B0. The results showed that the use of 
ResNet50 (95%) and EfficientNet-B0 (90%) resulted in the 
highest accuracy. In addition, the use of ensembles in the form 
of Ensemble 3 achieves an accuracy of 98.33%. Recent 
research by Islam et al. deals with the classification of various 
parts of the human body using several classifiers such as 
ResNet50, Inception-V3, DenseNet121, MnasNet-A1, 
MobileNet-V2, ShuffleNet-V2, and SqueezeNet. The results 
showed that the classifier using ShuffleNet-V2 achieved the 
highest accuracy, namely 79%.  

Based on the research that has been done, in general there 
are two different types of research. The first research is on 
close skin tissue, while the second research uses a variety of 
images showing the full body, limbs, face dan trunk. From the 
results of the study it can be seen that the classification of close 
skin tissue produces better accuracy than the various images. 
Mu˜noz-Saavedra et al. shows the best results using ensemble 
3, which combines the ResNet50, EfficientNet-B0, and 
MobileNet-V2 methods which achieve an accuracy of 
98.33%. 

The study on images of the entire body, limbs, face, and 
trunk resulted in an accuracy range of 71% to 82%. This 
dataset contains more variations and complexities, making it 
harder to achieve high accuracy. As a result, this dataset 
provides a more realistic assessment of the model's 
performance in real-life situations. Therefore, further research 
on these types of images is necessary to improve the 
performance of the models created. 

The previous studies demonstrated good results for VGG-
16, ResNet50, and Inception-V3; however, there is still room 
for further improvement. In contrast, Mu˜noz-Saavedra et al. 
achieved good performance with 90% accuracy using 

EfficientNet-B0 in their study. Nevertheless, there is currently 
no research that has explored the use of EfficientNet for 
monkeypox image recognition, particularly in the context of 
entire body, limbs, face, and trunk images. Consequently, this 
research aim to employ CNN: EfficientNet-B0 as the chosen 
approach for the classification of monkeypox. For this reason, 
it is necessary to know the performance of EfficientNet-B0 for 
other skin disease classifications as shown in Table II. 

TABLE II.  EFFICIENTNET-B0 SKIN DISEASE PERFORMANCE 

Paper Images Accuracy (%) 

Hridoy dkk (2021) 

[17] 
Citra penyakit kulit 93.35 

Ali et al. (2022) 

[18] 
HAM1000 dataset 83.02 

Minarno et al. 

(2022)[19] . 

Breast cancer 

Histopathological images 
98.90 

Gunwant et al. 

(2022) [20]. 

Eczema, Psoriasis, Lichen 

Planus, Benign Tumors, 

Fungal Infections, and Viral 

Infections 

91.36%. 

Based on Table 2, there are 4 literature studies that show 
the performance of EfficientNet-B0. The performance of 
EfficientNet-B0 showed 91.36% results for the classification 
of 7 types of skin diseases conducted by Gunwant et al, as well 
as the research conducted by Hridoy, who was able to achieve 
93.35% accuracy for the classification of skin diseases using 
EfficientNet-B0.  

According to Tan et al. [12], EfficientNet-B0 shows good 
performance on various common datasets. It outperforms 
other models while requiring fewer parameters. When 
compared to ResNet-50 and DenseNet-169 using the 
ImageNet dataset, EfficientNet-B0 achieves superior accuracy 
at 77.1%, surpassing ResNet-50's accuracy of 76% and 
DenseNet-169's accuracy of 76.2%, despite having only one-
fourth the number of parameters. Additionally, the 
EfficientNet compound scaling technique enhances accuracy 
and efficiency compared to other models like MobileNet, 
which achieves 1.4% higher accuracy on the ImageNet 
dataset. 

CIFAR-10 and CIFAR-100 serve as widely used 
benchmarks to evaluate the performance of deep learning 
models in image recognition and classification. In terms of 
model structure, EfficientNet-B0 outperforms NASNet-A on 
the CIFAR dataset, delivering higher accuracy with a more 
streamlined architecture. Therefore, due to its robust scaling 
adaptability, efficient convolution layers, and ability to 
recognize intricate image patterns, EfficientNet-B0 emerges 
as a promising choice for developing deep learning models for 
the classification of monkeypox images. 

EfficientNet-B0 has slightly better performance than other 
models with less number of parameters. EfficientNet-B0 is 
compared to ResNet-50 and DenseNet-169 using the 
ImageNet dataset. The results show that EfficientNet-B0 has 
a better accuracy, which is 77.1%, compared to ResNet-50 and 
DenseNet-169 which have an accuracy of 76% and 76.2% 
respectively, and has fewer parameters by 4 times. In addition, 
the EfficientNet scaling method improves accuracy and 
efficiency compared to other models, such as MobileNet 
which has 1.4% better accuracy on the ImageNet dataset [11].  



III. METHODOLOGY 

A. EfficientNet-B0 Architecture 

EfficientNet was first introduced in the research conducted 
by Tan and Le. The study states that EfficientNet is one of the 
most efficient models and can achieve the highest accuracy in 
ImageNet and image classification transfer learning. 
EfficientNet has several models from B0 to B7. EfficientNet-
B0 is the baseline model of the EfficientNet architecture itself 
[12]. The architecture of the EfficientNet-B0 model can be 
seen in Fig. 1. 

 

Fig. 1. EfficientNet-B0 Architecture[12] 

 The basis of this architecture is MBConv (Mobile Inverted 
Bottleneck), which is also known as an inverted residual block 
with an additional SE block (Squeeze and Excitation). 
MBConv (Mobile Inverted Bottleneck Convolution) is the 
foundational block used in the EfficientNet architecture, 
which is a computationally efficient Convolutional Neural 
Network (CNN) model. Here are the MBConv1 and 
MBConv6 architectures on EfficientNet-B0 as shown in Fig. 
2. 

 

Fig. 2. MBConv Blocks[21] 

The MBConv block on EfficientNet-B0 has variations, 

namely MBConv1, and MBConv6, each of which can have a 

different convolution kernel in its process. Each MBConv 

block on EfficientNet-B0 is also equipped with a Squeeze-

and-Excitation (SE) block to increase its effectiveness. In 

addition, EfficientNet-B0 also uses a comprehensive scaling 

approach called efficient scaling to achieve optimal levels of 

efficiency and performance. This approach involves 

increasing the three main dimensions of the CNN 

architecture, namely width, depth, and image resolution 

proportionally to achieve the best performance [12], [22]. 

In the EfficientNet-B0 architecture, MBConv blocks are 

used at each level or blocks that consist of several MBConv 

blocks arranged in stages. Each level/block has a different 

level of depth and width, depending on the overall scale of 

the CNN architecture. In the overall architecture of 

EfficientNet-B0, MBConv blocks are used repeatedly in 

combination with other blocks as shown in Figure 1. The 

EfficientNet-B0 architecture comprises multiple components 

that contribute to its overall structure. These components 

include a 3x3 convolution layer, MBConv1 blocks, and 

MBConv6 blocks. Each block possesses specific parameters, 

channels, and layers. Detailed information regarding these 

parameters can be found in Table 3 

TABLE III.  EFFICIENTNET-B0 DETAILED INFORMATION. 

Stage Operator Resolution  Channels  Layers 

1 Conv 3x3 224x224 3 1 

2 MBConv1 3x3 112 x 112 32 1 

3 MBConv6 3x3 112x112 16 2 

4 MBConv6 5x5 56x56 24 2 

5 MBConv6 3x3 28x28 40 3 

6 MBConv6 5x5 28x28 80 3 

7 MBConv6 5x5 14x14 112 4 

8 MBConv6 3x3 7x7 320 1 

9 

Conv1x1 & 

Pooling & FC 

224x224 1280 1 

B. Research flow 

This research adopts a systematic and structured research 

flow to develop and evaluate a Deep Learning model for 

monkeypox image classification. The key steps involved in 

this process include dataset collection, data pre-processing, 

model training, and model testing using sensitivity, 

specificity, and accuracy evaluation metrics as shown in Fig 

3. 

 

Fig. 3. Research Flow 

During the dataset collection stage, we carefully gather a 

balanced collection of monkeypox images, consisting of 106 

samples per class, from reliable and reputable sources. 

Subsequently, data pre-processing techniques are applied to 

enrich the dataset by augmenting the samples. Augmentation 

techniques such as rotation, cropping, and shifting are 

employed to enhance sample variation. 

Following the pre-processing stage, the Deep Learning 

model is trained using the augmented dataset. After the 

training phase, the trained model is saved and evaluated using 



a separate test dataset. Performance evaluation is carried out 

using sensitivity, specificity, and accuracy metrics. The 

results obtained can be compared with previous research, 

contributing to the advancement of improved models and 

their applications in the future. 

C. Dataset Description and Preprocessing 

Dataset used in this research consist of a dataset 
comprising skin lesion images categorized into two classes: 
monkeypox and non-monkeypox (measles and chickenpox). 
The dataset, provided by the research team from the 
University of Dhaka, Bangladesh [9], has undergone 
augmentation to increase its size to approximately 3192 
images, with dimensions of 224 x 224 x 3 RGB. The original 
dataset consisted of 228 images, which were divided into the 
monkeypox class (102 images) and the other class (126 
images). Considering the context of deep learning, the number 
of images in this dataset is relatively small. To address this 
limitation, image augmentation was performed to increase the 
number of images. 

Through the process of image augmentation, the dataset 
was expanded by a factor of 14. After augmentation, the 
'monkeypox' class comprised 1428 images, while the 'others' 
class contained 1764 images. An imbalance was observed 
between the number of images in the 'monkeypox' class and 
the 'others' class. To address this imbalance, additional 
samples were generated for the 'monkeypox' class using data 
augmentation techniques. The purpose of introducing these 
additional samples was to achieve a balanced distribution of 
classes within the dataset, ensuring 1764 images in each class 
as show in figure 4. 

       

       
Fig. 4. Augmented Images 

Additionally, to further enhance the robustness of our 
dataset, we divided it into 7 folds through stratified sampling. 
This approach ensured that each fold maintained a 
proportional representation of both the 'monkeypox' class and 
the 'others' class. The stratified division of the dataset into 
folds enables more reliable evaluation and validation of the 
trained model's performance, as it accounts for potential 
variations in the distribution of classes within the dataset. 
Each fold is subsequently used for cross-validation, allowing 
us to assess the model's generalization capabilities across 
different subsets of the data. 

The dataset used in this research has been divided into two 
subsets: training set and testing set. The training set consists 
of 1512 augmented images to train the classification model, 
while the testing set (252 images) is used to test the final 
model's performance on new data that has never been seen 
before, providing a more realistic picture of the model's ability 
to classify monkeypox images. This division of the dataset is 
important in developing an accurate and reliable classification 
model. 

IV. EXPERIMENTAL RESULTS 

In our study, we employed the EfficientNet-B0 
architecture from scratch, utilizing 224x224x3 input images 
for monkeypox classification. The training process involved 
setting a learning rate of 0.00001 and utilizing the Adam 
optimizer with a batch size of 16. We trained the model for 
150 epochs, implementing an early callback mechanism to 
prevent overfitting. The primary evaluation metrics for 
assessing our model's performance were accuracy, sensitivity, 
and specificity. To ensure robustness, we performed a seven-
fold cross-validation and reported the average values of these 
metrics across the folds. The model development process 
involved utilizing the RGB color space and an image size of 
224x224 as the approach for classifying monkeypox images. 
After undergoing thorough training and testing procedures, 
the obtained results are presented in Table 4. 

TABLE IV.  EFFICIENTNET-B0 PERFORMANCE RESULT 

Fold TP FN TN FP Acc 

(%) 

Sensitivity 

(%) 

Spesifisity 

(%) 

1 198 54 232 20 85,32 78,57 92,06 

2 200 52 234 18 86,11 79,37 92,86 

3 198 54 234 18 85,71 78,57 92,86 

4 193 59 231 21 84,13 76,59 91,67 

5 201 51 234 18 86,31 79,76 92,86 

6 199 53 223 29 83,73 78,97 88,49 

Average 85,12 78,46 91,78 

 In the 7-fold experiment conducted on EfficientNet-B0, 
the average accuracy, sensitivity, and specificity results were 
85,12%, 78,46%, and 91,78%, respectively. These results 
show the model's performance in classifying monkeypox 
images using EfficientNet-B0. These results indicate that 
EfficientNet-B0 architecture provides good performance in 
classifying monkeypox images. In the test results, it the 
models converge slowly. This is caused by the small learning 
rate value. A small learning rate value results in very small 
changes in the weight and bias of the model each time an 
update is carried out, so the model learns at a slower speed. 

The variation in accuracy observed across different folds 
can be attributed to several factors. Differences in data 
distribution and representation within each fold can 
significantly impact the performance of the model. For 
instance, one-fold may exhibit imbalanced class 
representation or contain outliers, leading to lower accuracy. 
Additionally, variations in data characteristics among folds 
can also influence model performance, as the variability in 
data may pose challenges for the model to identify patterns 
and generalize effectively. 

It is essential to emphasize that variations in accuracy 
across folds do not necessarily imply the superiority or 
inferiority of any fold. These differences are, to some extent, 
a result of randomization in data distribution and can be 
mitigated by employing more extensive and consistent 
evaluation techniques, such as employing more complex 
cross-validation methods. In this study, the observed accuracy 
variation across different folds highlights the importance of 
utilizing a cross-validation approach with a higher number of 
folds to obtain more representative and reliable outcomes. In 
addition, this study also compares the performance of the 
EfficientNet-B0 architecture with other popular architectures 
as follows: 

 

 



TABLE V.  MODEL PERFORMANCE 

Model Acc Sensitivity Spesificity 

EfficientNet-B0 85,12 78,46 91,78 

MobileNet 63,63 57,99 69,27 

ResNet-50 87,59 82,77 92,4 

InceptionV3 71,4 63,21 79,59 

Table 6 showcases the results of our research, presenting 
the average accuracy achieved through a six-fold cross-
validation process. Among the models evaluated, the 
EfficientNet-B0 model stood out with accuracy of 85.12%, 
surpassing the accuracy of other models such as MobileNet 
(63.63%) and InceptionV3 (71.4%). Notably, the 
EfficientNet-B0 model also exhibited strong sensitivity with a 
value of 78.46%, outperforming MobileNet's sensitivity of 
57.99%. In terms of specificity, EfficientNet-B0 showcased 
impressive performance with a specificity value of 91.78%, 
surpassing the specificity values of MobileNet (82.77%) and 
InceptionV3.  

EfficientNet-B0 model demonstrated competitive 
performance, achieving an accuracy of 85,12%. While it did 
not surpass the accuracy of ResNet-50, which achieved 
87.59%, it is noteworthy that the EfficientNet-B0 model 
achieved this level of accuracy with approximately four times 
fewer parameters. This highlights the efficiency of the 
EfficientNet-B0 architecture in terms of parameter usage and 
computational resources. These findings underscore the 
potential of EfficientNet-B0 as an effective and resource-
efficient model for image classification tasks, providing a 
promising avenue for optimizing deep learning architectures 
in terms of both performance and computational cost. The 
results also emphasize the potential impact of EfficientNet-B0 
in improving clinical decision-making processes and 
advancing the field of medical image analysis. 

V. CONCLUSION 

In conclusion, this study highlights the superior 
performance of the EfficientNet-B0 model in classifying 
monkeypox images compared to other architectures. The 
EfficientNet-B0 model exhibits higher accuracy and 
demonstrates its effectiveness in extracting image features, 
leading to improved classification results. Therefore, it is 
recommended to consider EfficientNet-B0 as a potential 
architecture for the classification of monkeypox images, 
serving as a valuable guide for the development of more 
efficient and accurate models in the future. Additionally, 
expanding the dataset by incorporating diverse image samples 
and encompassing various variations of monkeypox is 
recommended to enhance the representativeness of the dataset 
and further improve the accuracy and reliability of the 
classification outcomes. 
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