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ABSTRACT: Along with the development of motor vehicle indus-
try technology at this time, the fuel demand is also increasing while
the supply is running low. Thus, alternative fuels are needed to
meet these energy needs. This study aims to explain the physical
and chemical characteristics of a fuel mixture (MF) between palm
sap bioethanol with premium fuel. The results showed that the
higher the bioethanol concentration of the palm sap, the higher the
MF’s viscosity, but the lower the heat of the fuel. This decrease is
caused by differences in the heating value of the two fuels. The
MF’s high heat burn value is blue, while the low heat value of the
flame is reddish yellow. The results of this study are very important as a basis for the development of bioethanol from palm sap as an
environmentally friendly vehicle-fuel substitute material.

1. INTRODUCTION

The human need for fuel is currently increasing along with the
development of the motor vehicle industry.1 The largest source
of fuel used by motor vehicles is fossil fuels.2 These fossil fuels
cannot be expected to be around for a long period of time
because their amount is limited and they cannot be renewed.3,4

Bioethanol has been developed in many countries as an energy
source for fossil energy substitution.5,6 Bioethanol production in
the United States is developed from corn to apply bioethanol
energy.7 Brazil has been developing bioethanol sourced from
sugar cane by conducting tests on vehicles since 1925.8 China
and Thailand develop bioethanol from cassava.9 South Korea
has been developing biodiesel since 2002, and its consumption is
estimated to increase by 0.5% per year.5

Brazil develops bioethanol from sugar cane at a low cost of
14 cents a dollar per liter, Thailand with tapioca, 18.5 cents a
dollar per liter, and America using corn, 25.5 cents a dollar per
liter.10 The success of Brazil in producing bioethanol from sugar
cane on an industrial scale has led many countries to follow their
strategic steps. Currently, in Brazil, motorcyclists can fill fuel
tanks with a mixture of 24% ethanol and 76% gasoline.11 As for
Indonesia, the government has given serious attention to devel-
oping bioethanol by issuing Presidential Instruction no. 1 of 2006
regarding the supply and use of biofuel as an alternative fuel.12,13

Bioethanol is one type of biofuel that can be used as a sub-
stitute for fossil fuels.14,15 The use of bioethanol as a fuel mixture
is important to save the earth from global warming.16 The devel-
opment of bioethanol as an alternative fuel must be supported by
several factors, including the availability of abundant raw materials,
bioethanol-making technology available, and the existence of
promising market opportunities and benefits.17,18

Bioethanol can be produced from various types of plants, such
as sugar cane, cassava, corn, sorghum, palm sap, or other types of
plants.18,19 Palm sap (Arenga pinnata Merr, A. pinnata) is very
abundant in Indonesia (Table 1), so it has the potential to be
processed into bioethanol.20 This plant contains glucose,
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Table 1. Estimated Area of Palm Sap in Indonesia25

province an estimate of the total area (ha)

Nanggro Aceh Darussalam 4081
North Sumatera 4357
West Sumatera 1830
Bengkulu 1748
West Jawa 13,135
Banten 1448
Central Jawa 3078
South Kalimantan 1442
North Sulawesi 6000
South Sulawesi 7293
Southeast Sulawesi 3070
Maluku 1000
North Maluku 2000
Papua 10,000
total 60,482
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fructose, and sucrose with a composition of approximately 0.4−
0.5%, 0.5−0.6%, and 10−13%, respectively.21,22 The sugar con-
tent is quite high, so palm sap has the potential to be processed
into bioethanol.23 So far, the use of palm sap is still very limited,
namely, only in the manufacture of palm sugar.24

Bioethanol has become a very interesting topic and is always
an updated study in various research communities in the world
from the production process to compatibility with motor
vehicles.1,26 Some advantages of using bioethanol include exhaust
emissions that are more environmentally friendly compared to
premium fuels and Pertamax.27,28 Bioethanol is a potential fuel
because the raw material can be renewed.29

Bioethanol production must be focused on abundant plants,
but its use is not for basic food needs. Brazil has been applying
the bioethanol−gasoline mixture since the 1930s and increased
its application by 50% in 1943.30 Indonesia as a country that has
a relatively similar geographical condition to that of Brazil has
the potential to follow Brazil’s path in utilizing abundant natural
resources to meet domestic energy needs. This is in line with
Indonesia’s transportation system, which mostly uses gasoline.13

Bioethanol can bring practical benefits if applied nationally in
Indonesia.28

It is very possible to mix the physical and chemical char-
acteristics of bioethanol with those of gasoline.31 The need to
meet energy demand with apprehensive environmental impacts
and limited fuel stock from fossil fuels has led researchers to look
for renewable and environmentally friendly energy resources,
one of which is bioethanol.32 However, the bioethanol produc-
tion process is more complex and requires a large investment
capital.33 The main obstacle is that bioethanol must be com-
patible with motor vehicle combustion systems.34

Based on the arguments above, in this paper, the focus of the
study is on the physical and chemical properties of the fuel mix-
ture of palm sap bioethanol with premium fuel (MF). Although
there have been studies focusing on aspects of bioethanol
production,35,36 it is still urgent to conduct research that focuses
on explaining the physical and chemical properties of palm sap
bioethanol after it is mixed with premium fuel.
Many researchers have developed palm sap into bioethanol as

a fuel mixture for motor vehicles.20,37−39 However, no valid data
has been found about the viscosity, calorific value, and flame
after the palm sap bioethanol is mixed with premium fuel. There-
fore, it is important to examine and reveal the viscosity, calorific
value, and flame as physical and chemical characteristics of fuel
for motor vehicles. Thus, the purpose of this study is to explain
the physical and chemical characteristics of a fuel mixture
between palm sap bioethanol and premium.

2. METHOD AND MATERIALS
2.1. Materials and Tools. The materials used are bio-

ethanol from distilled palm sap (A. pinnata MERR) (Figure 1)
and premium-type fuel with an octane number of 88 obtained
directly from refueling inMataram,WestNusa Tenggara Province,
Indonesia.
These ingredients are mixed with various variations of the

concentration (Table 2).
The tools used are a viscometer, C-5000 calorimeter bomb,

thermometer, test tube, analytical balance, oxygen cylinder, oxy-
gen regulator, oxygen hose, test tube, and LPG gas stove.
2.2. MF ViscosityMeasurement.MF viscosity is measured

using an open gravity capillary viscometer in the temperature
range of 20−30 °C.40Mathematically, theMF viscosity equation
can be written41 as

F A
V
L

η=
(1)

with F as the force on the surface of the liquid, η as the coefficient
of fluid viscosity (Ns/m2), A as the liquid area (m2), V as the
moving wall velocity (m/s), and L as the distance of the two
surfaces (m).

2.3. Measurement of the MF Calorific Value. MF burn
calorie measurements were done using a bomb calorimeter, type
IKAC-5000. The reaction that occurs in a bomb calorimeter can
produce heat absorbed by water and bombs so that no heat is
wasted into the air, so it can be written as

r q q( )eaction air bomb= − + (2)

The amount of heat absorbed by water can be calculated using
the formula

Q mc Twater = Δ (3)

Figure 1. Palm sap is widely cultivated in Indonesia.

Table 2. Variation of Concentrations between Bioethanol
Palm Sap and Premium Fuel

no. palm sap bioethanol (mL) premium (mL)

1 10 90
2 15 80
3 20 70
4 25 60
5 30 50

Figure 2. MF bioethanol and premium flame test.
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where m is the mass of water (g), c is the heat type of water
(J/kg °C), and ΔT is the temperature change (°C).
The amount of heat absorbed by the bomb calorimeter can be

calculated using the formula

q c Tbomb bomb= Δ (4)

where cbomb = heat capacity of bomb (J/g °C) and ΔT is the
temperature change (°C).
2.4. MF Flame Test. Flame tests were carried out to detect

the presence of metal ion elements in the MF of bioethanol and
premium fuel by dipping cotton buds washed with hydrochloric
acid in the MF liquid and then igniting it with fire (Figure 2).
This flame test is to provide qualitative information on the colors
arising from the combustion process based on the light spectrum
of the electromagnetic radiation elements present in the sample.
The flame that arises will be adjusted to the table of chemical
elements with their flames.42

2.5. Data Analysis. The effect of variations in the con-
centration of palm sap bioethanol and premium fuel on the
physical and chemical characteristics of the MF was analyzed
using analysis of variance.43 If the F-count value is greater than
the F-crit, it means that there is a significant difference in the
significance level of 95%. The most influential variable can be
identified using the DMRT (Duncan’s multiple-range test).

3. RESULTS AND DISCUSSION
3.1. Viscosity of MF. Palm sap bioethanol produced in this

study is shown in Figure 3. The MF viscosity in various

concentrations of bioethanol and premium fuel is shown in
Table 3. In the table, it appears that the higher the concentration
of the palm sap bioethanol, the higher the MF’s viscosity. Fuel
viscosity can affect the fogging process. Fuels that have high
viscosity are difficult to atomize. Conversely, fuels with low viscos-
ity are easier to atomize. Fuels that are more easily atomized are
also easier to ignite and also more perfect for combustion.
The result of the bioethanol test of palm sap was a value of

4.7 mm2/s, while that of the premium fuel was 7.2 mm2/s.42

After mixing, the data obtained showed that the higher the
concentration of palm sap bioethanol, the lower theMF’s viscos-
ity (Table 3). This is thought to be influenced by the viscosity of
bioethanol, which is lower than the premium viscosity. These
results are in line with research reported by Tazi and Sulistiana2

in that the higher the addition of bioethanol, the lower the
viscosity of the fuel.
The results of the two-factor variance analysis show that the

calculated F-value (153.963) is greater than the F-table value
(3.490). This means that the variation in the concentration of
palm sap bioethanol has a significant effect (p > 0.5) on theMF’s
viscosity (Table 4).

3.2.MF Calorific Value.The calorific value of the fuel shows
the heat produced from the combustion process. If the combus-
tion is perfect, then the optimal thermal energy can be obtained.
Separate test results obtained show that the caloric value of palm
sap ethanol is 10.126 kcal/g, while that of the premium is
11.414 kcal/g. After mixing, the highest heating value of the MF
was 11.107 kcal/g and the lowest was 9.445 kcal/g (Table 5).
Table 5 shows that the higher the concentration of palm sap

bioethanol added to the premium fuel, the lower the MF’s
calorific value. This decrease is caused by the difference in the
heating value between the two fuels. The results of this study are
in line with the research of Budiprasojo and Pratama39 who
reported that the low heating value of fuel can affect the high
heating value if mixed.
The National Standards Agency (BSN) has set bioethanol

quality standards with a minimum heating value of 5000 kcal/g.44

Based on the quality standards set by BSN, the MF bioethanol
and premium produced in this study were following the
standards.
The results of the two-factor analysis of variance show that the

calculated F-value (144.894) is greater than the F-table value
(3.490) (Table 6). This means that the variation in the

Figure 3. Palm sap bioethanol produced in this study.

Table 3. MF Viscosity at Various Concentrations between
Bioethanol and Premium Fuel

comparison of fuel mixtures (%)

no.
bioethanol of palm sap

(mL)
premium
(mL)

viscosity of MF
(mm2/s)

1 10 90 5.4
2 15 85 5.4
3 20 80 4.6
4 25 75 4.5
5 30 70 4.3

Table 4. Results of the Two-Factor Analysis of Variance of MF Viscosity Parameters

source of variation SS df MS F P value F crit

rows 1.223 4 0.30575 0.007 0.999 3.259
columns 19625.3 3 6541.7653 153.963 7.647 × 10−10 3.490
error 509.869 12 42.489083
total 20136.39 19

Table 5. MF Calorific Values for Various Concentrations
between Bioethanol and Premium Fuel

comparison of fuel mixtures (%)

no.
palm sap bioethanol

(mL)
premium
(mL)

calorific values of MF
(kcal/g)

1 10 90 11.107

2 15 85 11.015

3 20 80 10.324

4 25 75 10.152

5 30 70 9.445
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concentration of palm sap bioethanol has a significant effect
(p > 0.5) on the heating value of the MF.
3.3. MF Flame Test. MF flame test results on variations in

the concentration of palm sap bioethanol and premium fuel
showed two different types of flame colors, namely, blue and
reddish yellow.MF that contains low concentrations of palm sap
bioethanol, produces a blue flame while, with high concen-
trations, produces a reddish yellow flame. This is in line with the
report of McLinden et al.45 in that the flame from bioethanol is
not only blue but also reddish yellow. The same thing was
reported by Polikarpov et al.46 in that, at the time of combustion,
a blue flame appeared at the bottom and a reddish yellow one
appeared at the top.
The blue combustion results indicate that the methane (CH4)

in theMFwas completely burned. The results of this study are in
line with the research of Susanto et al.47 who reported that
methane gas was marked with a blue flame. However, the red-
dish yellow fire means incomplete combustion and that the
flame is unstable. Cahyani48 also reports that the color of the
blue flame indicates high ethanol levels.
A comparison of the physical and chemical characteristics of

the mixed fuel between the palm sap bioethanol and premium
fuel from this study with several other studies is shown in Table 7.
The results of the two-factor variance analysis show that

the calculated F-value (68.308) is greater than the F-table value
(3.490) (Table 8). This means that variations in the con-
centration of palm sap bioethanol and premium fuel affect
the MF’s flame. The blue flame color indicates high ethanol
content.

4. CONCLUSIONS

The high concentrations of palm sap bioethanol cause the MF
viscosity to also be higher, but too difficult to obscure. The
higher the concentration of palm sap bioethanol, the lower the
heating value of MF. The MF flame test results on variations in
the concentration of palm sap bioethanol and premium fuel
showed two different types of flame colors, namely, blue and
reddish yellow. The blue color indicates high ethanol content,
while the reddish yellow color indicates low ethanol content.
The physical and chemical properties of MF fuels still need to

be studied comprehensively by conducting MF trials on various
types of motorized vehicles. Besides, further research is needed
on mixing palm sap bioethanol with other types of fuel.
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Table 6. Results of Two-Factor Variance Analysis for MF Calorific-Value Parameters

source of variation SS df MS F P value F crit

rows 0.870752 4 0.217688 0.005 0.99994 3.259
columns 18509.81 3 6169.936 144.894 1.09 × 10−9 3.490
error 510.9863 12 42.58219
total 19021.66 19

Table 7. Comparison of Physical and Chemical
Characteristics of Mixed Fuel

value

combined of fuel mixes

viscosity at
40 °C

(mm2/s)
calorific
(kcal/g)

flame test
(color) references

premium of RON 88 7.2 11.414 reddish
yellow

41

20% bioethanol of liquid
polypropylene−80% Gasoline

11.340 reddish
yellow

39

20% bioethanol of pineapple−
80% premium

7.331 46

30% bioethanol of cassava
flour−70% gasoline

23 38

30% bioethanol of sugar
molasses−70% gasoline

2.2 15 37

30% palm sap bioethanol−70%
premium

4.7 10.126 reddish
yellow

this
research

Table 8. Results of Two-Factor Analysis of Variance of the MF’s Flame Value

source of variation SS df MS F P value F crit

rows 155.0324 4 38.75809 0.408 0.799 3.259
columns 19472.58 3 6490.86 68.308 8.23 × 10−8 3.490
error 1140.277 12 95.02309
total 20767.89 19
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