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Abstract. Flow on the airfoil with deploying microtabs was performed to investigation 

aerodynamic performance airfoil modified with microtabs. Computer Fluid Dynamic (CFD) 

simulation has already been conducted to study the effects of heights deploying tab to the 

aerodynamic performance characteristics of airfoil sections. The aim of this study was 

performed to determine the effect of tab heights under variations of angle of attack againt the 

behaviour of stall airfoil and determine the effect of tab heights on the lift coefficient (CL) and 

drag coefficient (CD) on tab heights of 1.1% C, 2,2% C and 3.3% C for upper and lower 

surfaces airfoil. The angle of attach airfoil was from -4
o
 to 32

o
 with interval 2

0
. From the 

results of CFD simulations showed that the addition of microtabs on the airfoil Wortmann 

FX63-137 for the lower surface had the effect of increasing the lift force and lift coefficient, 

the increase occurred consistently and stall occurred at an angle of 26
o
 for tab heights of 1.1% 

C and 2,2%C while the tab height of 3.3% C a stall occurred at an angle of 20
o
. For upper 

surface, microtabs caused a decrease in lift force and stalls occurred at angle of 22
o
 for all tab 

heights. The drag coefficient also increased under the increasing angle of attack with highest 

value was at tab height of 1.1% C of 2.542 and an angle of attack of 28
0
, while on the lower 

surface the largest drag coefficient was at a tab height of 3.3% C of 2.73. 

1. Introduction 

The most important aspect when a wind turbine operation is its aerodynamic performance, which is 

based on the use of the type airfoil in the design wind turbine blades. Several series airfoils have been 

used for the design wind turbine blades, such as the National Advisory Committee on Aeronautics 

(NACA) airfoils, the National Renewable Energy Laboratory (NREL) airfoils and the Solar Energy 

Research Institute (SERI) airfoils.The airfoil series have been extensively modified in order to 

incorporate various active control systems, such as the modification airfoil with aileron, flaps and 

microtabs, into design of wind turbine blades [1, 2, 3, 4].   
This paper introduces the use of modified airfoils with microtabs as an active control system. The 

use of active control systems as a means of regulating large-scale wind turbine power has been widely 

used while operating at high wind speeds [5] and [6]. The application of an active control system is 

very useful for large-scale wind turbines considering its function as power regulation also functions 

for load regulation or reduction of loading forces due to aerodynamic forces when wind energy is 

converted by the rotor at wind turbine blades [2, 5].  
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To improve the aerodynamic performance of wind turbines, one of the simple devices that can be 

effectively used as an active control system is microtabs, by placing tabs on the airfoil surface near the 

trailing edge. [7, 8, 9] conducted a lot of initial research related to the early development of the 

microtabs concept. In his research, she conducted a computational study and wind tunnel testing by 

modifying the GU25-5 airfoil where the microtabs were placed on the lower surface of the airfoil. 

Additionally, 2-D infinite span models focus on 3-D microtabs with finite width and gaps. The 

promise and benefits of microtabs in terms of lift augmentation without significant drag penalties were 

immediately apparent from her work. The [10] continued their research by studying very 

comprehensively on 2-D computational by examining the tab height and tab location on the upper and 

lower surface of the S809 and the GU25-5 airfoil. The [11] performed computational investigated the 

3-D effect microtabs by modelling finite width microtabs on semi-infinite wing, the results showed 

that the reduced tab effectiveness as gap size increased. 
The combination of computational studies and experimental validation has provided confidence in 

understanding the behaviour of microtabs in which the microtabs provides the aerodynamic effect 

needed as an active control system device without technological obstacles in the application of a 

microtab-based load control system. The aim of this study was to carry out computational 

investigations to analyze the aerodynamic performance of  Wortmann FX63-137 airfoils modified by 

microtabs where the variation of tab heights were modelled of 1.1% C, 2.2% C, 3.3% C for lower and 

upper and under variations in angle of attack from -4
0
 to 32

0
 at intervals of 2

0
. The investigation used 

the same methodology that presented in previously studies by [11] and [12]. 

2. Method 

The investigation of computational deploying microtabs was simulated using Autodesk Computational 

Fluid Dynamic (CFD). The purpose of this study is to determine the effect of variations tab heights 

under variations angle of attack on the behaviour of stall airfoil and determine the effect of tab heights 

on the lift coefficient (CL) and drag coefficient (CD) with tab heights of 1.1% C, 2,2% C and 3.3% C 

in the upper and lower surfaces. 
In this study, airfoil was modified by adding  microtabs type solid tab. Tab height for upper surface 

and lower surface airfoil were similar by variation tab heights of 1.1% C, 2,2% C and 3.3% C for both 

surface and angle of attach airfoil from -4
o
 to 32

o
 by interval 2

0
. 

2.1. Design airfoil 

Geometry data of airfoil Wortmann FX63-136 was inserted into Autodesk Inventor 2019 software to 

design airfoil. After forming an airfoil, then drawing a microtab on the lower surface or upper surface 

airfoil, the next step was to extract 1 m with solid tab as shown in Figure 1 and 2. 

 

 
 

Figure 1. Airfoil modified microtabs 
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(a) (b) 

 

Figure 2. Detail tab location (a) tab lower surface , (b) tab upper surface. 

 

2.2. Flow solver  

The size of external volume refers to the research of [13] was adopted where the recommended 

provision was 5C from the leading edge to the inlet, from the top of external volume to the upper 

surface airfoil, from the lower surface airfoil to the bottom of the external volume, and 10C from the 

trailing edge to outlet external volume. In this boundary condition it consisted of the inlet and outlet as 

well as wall, the inlet contains the wind speed, because in this simulation the variable being varied was 

the Reynolds Number in which the air speed must be calculated and all solid boundaries were 

maintenance as viscous walls.  
In order to gain the regions and the wake where high gradient were expected to refine mesh, it was 

important to identify the mesh regions where the results have to be quite accurate. The computation 

was conducted fully turbulent. A three-dimensional and steady state simulation were conducted with a 

structured finite-volume flow solver using Reynolds averaged Navier–Stokes (RANS) equations. The 

shear stress turbulence (STT k-ω) model developed by [14] was employed in computation for each 

cases, it was superior to separate flow performance as reported by [15] and [16]. 

3. Result and discussion 

The computational study has been conducted to investigate aerodynamic performance airfoil on the 

various tab heights. The organized of this section are as follow:  first part explains about the effect of 

heights, and second part of this section explains about analysing of aerodynamic characteristic airfoil 

modified microtabs. 

3.1. The effect of variation tab heights 

From the results simulation with a wide of variation tab heights of 1,1% C, 22% C and 3,3% C for 

upper surface and lower surface by using SST k-omega turbulence model, the lift and drag force were 

obtained. The lift and drag force that occurred due to the difference in flow velocity at the upper and 

lower airfoil, the difference in flow velocity caused a difference in pressure at the upper and lower 

airfoil refer to throuh of Figure 8 to 12. 

    
(a)                                (b) 

Figure 3. Comparison lift force of baseline (airfoil without tab) and variation tab heights 

versus angle of attacht for (a) tab upper surface and (b) tab lower surface 
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(a)                                                                (b) 

Figure 4. Comparison lift coefecient of baseline (airfoil without tab) and variation tab 

heights versus angle of attacht for (a) tab upper surface and (b) tab lower surface. 

 

The Figure 3 shows that the comparison of lift force and angle of attack by adding tab on the lower 

surface causes an increase lift force while the upper surface is lower lift force when compared to 

baseline.  This condition was due to the fact that the angle of attack used was in a positive direction so 

that the effect of variations in tab height on changed in lift force was not visible on the upper surface 

when compared to the simulation results on the lower surface. In the Figures 3 and 4 of the three 

variations tab height for tab placement on the upper surface or lower surface, the lowest lift force and 

lift coefficient occur at the same angle of attack at an angle of -4
0
 while the highest lift force and lift 

coefficient occur at an angle of attack from 28
0
 to 32

0
, and the stall occurs at an angle of attack of 24

0
 

for the tab location on the upper surface and angle of attack of 20
0
 and 26

0
 for the lower surface.  

The addition of microtabs for the lower surface has the effect on the increasing of the lift force and 

the lift coefficient at tab heights of 1.1% C, 2.2% C and 3.3% C, the increasing is consistent and the 

stall point occurs at an angle of attack of 26
0
 for tab heights of 1.1% C and 2.2% C as well as the tab 

height of 3.3% C the stall occurs at an angle of attack of 20
0
. On the upper surface, the addition of 

microtabs causes a decrease in lift force when compared to the lower surface and the stall occurs at an 

angle of attack of 22
0
 for all of the tab heights, therefore the best of tab height for the lower surface is 

1.1% C because it has the largest L/D ratio of 0.321 at an angle of attack of 24
0
 and for the upper 

surface the best of tab height is 3.3% C because the L/D ratio of all heights is the smallest at the peak 

point of 0.302 that refer to the Figure 7. 

 
 

(a)                                                                 (b) 

 

Figure 5. Comparison drag force of variation tab heights versus angle of attacht for (a) tab upper 

surface and (b) tab lower surface. 
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(a)                                                           (b) 

Figure 6.  Comparison drag coeffecient of variation tab heights versus angle of attacht for (a) tab 

upper surface and (b) tab lower surface. 

 

According to the Figure 5, the addition of tabs on the upper surface or lower surface affects the 

aerodynamic performance of airfoil where the drag force increases with the increasing angle of attack 

for the tab location on the upper surface or lower surface but the higher the tab, the drag force that 

occurs tends to increase on the lower surface and decreased on the upper surface, meanwhile, the 

Figure 6 shows the drag coefficient on the upper surface and lower surface also increases with the 

increase in angle of attack. The largest drag coefficient is at tab height of 1.1% C for an upper surface 

of 2.542 at an angle of attack of 28
0
, while on the lower surface the largest drag coefficient is at a tab 

height of 3.3% C of 2.73. 

Aerodynamic performance of airfoil can be measured from the amount of lift/drag ratio, [17]. 

According to the Figure 7, it can be seen that on the upper surface the L/D ratio is maximum for all tab 

heights lies at the angle of attack of 20
0
 at this point the amount of the maximum lift force and the 

amount of the drag force are not too large, then at the angle of attack of 22
0
 the amount of L/D 

decrease. It shows that at angle of attack there is a stall phenomenon due to the occurrence of space on 

the upper surface of the airfoil because the air flow is released. Whereas on the lower surface for tab 

height 1.1% C of L/D maximum at 24
0
 angle of attack, tab height 2.2% C of L/D maximum at 20

0
 

angle of attack, and tab height of 3.3% C of L/D maximum at angle of attack 18
0
. The difference in 

stall position that occurs is due to differences in the area affected by air flow from each chord, this 

condition is greatly influenced by air velocity and pressure where the air velocity on the upper surface 

is high, the pressure becomes low and vice versa at the same time the air velocity on the part lower 

surface is low but the pressure becomes high, [17]. Therefore the best tab height for the lower surface 

is 1.1% C because it has the largest L/D ratio of 0.321 at 24
0
 angle of attack and for upper surface the 

best tab height is at 3.3% C because the L/D ratio of all elevations is at its lowest at 0.302 

 

 
(a)                               (b)   

Figure 7. Comparison ratio lift and drag force of variation tab heights versus angle of attacht for (a) 

tab upper surface and (b) tab lower surface 
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3.2. Aerodynamic analysis 

CFD is usefully simulation tool that can provide more detailed insight into the flow phenomena that 

govern a problem airfoil modified with mirotabs. The comparison of pressure distribution and velocity 

contour at lower surface are shown on through of the Figure 8 to 12. From those figures show that the 

change of pressure distribution and velocity contour have correlation under the change in angle of 

attack and the presence of microtab.     

According to through of the Figure 8 to 10, it is clearly that angle of attack airfoil of 0
0
 obtained the 

contours of static pressure over aerofoil is obviouslly symmetrical for upper and lower surface as well 

as the nose of airfoil is stagnation. Therefore, there are no created pressure different between two 

surface of airfoil while angle of attactt of airfoil of -4
0
 and 4

0
 create similar behaviour as angle of 

attackof 0
0
 in static pressure and stagnation point at nose airfoil.  

 

  
(a) (b) 

Figure 8. (a) pressure contours and (b) velocity vector, on an airfoil modified with tab 

height of 3,3% C lower surface on angle of attack -4
0
. 

 

  
(a) (b) 

Figure 9. (a) pressure contours and (b) velocity vector, on an airfoil modified with tab 

height of 3,3% C lower surface on angle of attack 0
0
. 

 

  
(a) (b) 

Figure 10. (a) pressure contours and (b) velocity vector, on an airfoil modified with tab 

height of 3,3% C lower surface on angle of attack 4
0
. 
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(a) (b) 

Figure 11. (a) pressure contours and (b) velocity vector, on an airfoil modified with tab 

height of 3,3% C lower surface on angle of attack 20
0
. 

 

  
(a) (b) 

Figure 12. (a) pressure contours and (b) velocity vector, on an airfoil modified with tab 

height of 3,3% C lower surface on angle of attack 22
0
. 

 

The Figure 11 and 12 show that the pressure distribution on over airfoil varied largely under highly 

angle of attack. The streamline and velocity countour with deploying microtabs produces a 

recirculation suction area on the lower surface near the trailing edge. This suction area enhances the 

flow pattern over the upper surface, changes the effective camber line, and affecs the pressure 

distribution. The results of pressure coefficient show that tabs located on the pressure side (lower 

surface) they can produce an increase in lift force while tabs located on the suction side (upper 

surface) generate a decrease in lift force. 

4. Conclusion 
The computational investigation has been carried-out. Based on the results of analysis that have been 

discussed previously, the following conclusions can be obtained: The addition of microtabs at the 

airfoil Wortmann FX63-137 for the lower surface has the effect on the increasing of the lift force and 

the lift coefficient at tab heights of 1.1% C, 2.2% C and 3.3% C, the increasing is consistent and a stall 

occurs at an angle of attack of 26
0
 for tab heights of 1.1% C and 2.2% C. For the tab height of 3.3% C 

the stall occurs at an angle of attack of 20
0
. On the upper surface, the addition of microtabs causes a 

decrease in lift force when compared to the lower surface and the stall occurs at an angle of attack of 

22
0
 for all of the tab heights, therefore the best of tab height for the lower surface is 1.1% C because it 

has the largest L/D ratio of 0.321 at an angle of attack of 24
0
 and for the upper surface the best of tab 

height is 3.3% C because the L/D ratio of all heights is the smallest at the peak point of 0.302. For the 

drag coefficient where the drag coefficient also increases with the increasing angle of attack, the 

largest drag coefficient is at tab height of 1.1% C for an upper surface of 2.542 at an angle of attack of 

28
0
, while on the lower surface the largest drag coefficient is at a tab height of 3.3% C of 2.73. 
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